ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3 Unicode version

Theorem feq3 5392
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq3  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )

Proof of Theorem feq3
StepHypRef Expression
1 sseq2 3207 . . 3  |-  ( A  =  B  ->  ( ran  F  C_  A  <->  ran  F  C_  B ) )
21anbi2d 464 . 2  |-  ( A  =  B  ->  (
( F  Fn  C  /\  ran  F  C_  A
)  <->  ( F  Fn  C  /\  ran  F  C_  B ) ) )
3 df-f 5262 . 2  |-  ( F : C --> A  <->  ( F  Fn  C  /\  ran  F  C_  A ) )
4 df-f 5262 . 2  |-  ( F : C --> B  <->  ( F  Fn  C  /\  ran  F  C_  B ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3157   ran crn 4664    Fn wfn 5253   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5262
This theorem is referenced by:  feq23  5393  feq3d  5396  feq123d  5398  fun2  5431  fconstg  5454  f1eq3  5460  fsng  5735  fsn2  5736  fsnunf  5762  mapvalg  6717  mapsn  6749  lmff  14461  txcn  14487  plyrecj  14974
  Copyright terms: Public domain W3C validator