| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq3 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3248 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-f 5322 |
. 2
| |
| 4 | df-f 5322 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 |
| This theorem is referenced by: feq23 5459 feq3d 5462 feq123d 5464 fun2 5498 fconstg 5522 f1eq3 5528 fsng 5808 fsn2 5809 fsnunf 5839 mapvalg 6805 mapsn 6837 lmff 14923 txcn 14949 plyrecj 15437 umgrislfupgrdom 15929 uspgriedgedg 15977 usgrislfuspgrdom 15988 wlkv0 16080 |
| Copyright terms: Public domain | W3C validator |