ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3 Unicode version

Theorem feq3 5322
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq3  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )

Proof of Theorem feq3
StepHypRef Expression
1 sseq2 3166 . . 3  |-  ( A  =  B  ->  ( ran  F  C_  A  <->  ran  F  C_  B ) )
21anbi2d 460 . 2  |-  ( A  =  B  ->  (
( F  Fn  C  /\  ran  F  C_  A
)  <->  ( F  Fn  C  /\  ran  F  C_  B ) ) )
3 df-f 5192 . 2  |-  ( F : C --> A  <->  ( F  Fn  C  /\  ran  F  C_  A ) )
4 df-f 5192 . 2  |-  ( F : C --> B  <->  ( F  Fn  C  /\  ran  F  C_  B ) )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116   ran crn 4605    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192
This theorem is referenced by:  feq23  5323  feq3d  5326  feq123d  5328  fun2  5361  fconstg  5384  f1eq3  5390  fsng  5658  fsn2  5659  fsnunf  5685  mapvalg  6624  mapsn  6656  lmff  12899  txcn  12925
  Copyright terms: Public domain W3C validator