ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3d Unicode version

Theorem feq3d 5462
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
Hypothesis
Ref Expression
feq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
feq3d  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )

Proof of Theorem feq3d
StepHypRef Expression
1 feq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 feq3 5458 . 2  |-  ( A  =  B  ->  ( F : X --> A  <->  F : X
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322
This theorem is referenced by:  gsumress  13428  resmhm2b  13522  isghm  13780  uptx  14948  txcn  14949  dvply2g  15440  lgseisenlem3  15751  lgseisenlem4  15752  uhgr0vb  15884  uhgrun  15886  upgrun  15924  umgrun  15926  wksfval  16035
  Copyright terms: Public domain W3C validator