ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3d Unicode version

Theorem feq3d 5434
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
Hypothesis
Ref Expression
feq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
feq3d  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )

Proof of Theorem feq3d
StepHypRef Expression
1 feq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 feq3 5430 . 2  |-  ( A  =  B  ->  ( F : X --> A  <->  F : X
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-f 5294
This theorem is referenced by:  gsumress  13342  resmhm2b  13436  isghm  13694  uptx  14861  txcn  14862  dvply2g  15353  lgseisenlem3  15664  lgseisenlem4  15665  uhgr0vb  15795  uhgrun  15797  upgrun  15832  umgrun  15834
  Copyright terms: Public domain W3C validator