ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3d Unicode version

Theorem feq3d 5392
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
Hypothesis
Ref Expression
feq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
feq3d  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )

Proof of Theorem feq3d
StepHypRef Expression
1 feq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 feq3 5388 . 2  |-  ( A  =  B  ->  ( F : X --> A  <->  F : X
--> B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : X --> A 
<->  F : X --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-f 5258
This theorem is referenced by:  gsumress  12978  resmhm2b  13061  isghm  13313  uptx  14442  txcn  14443  lgseisenlem3  15188  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator