ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq12d Unicode version

Theorem feq12d 5327
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1  |-  ( ph  ->  F  =  G )
feq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
feq12d  |-  ( ph  ->  ( F : A --> C 
<->  G : B --> C ) )

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21feq1d 5324 . 2  |-  ( ph  ->  ( F : A --> C 
<->  G : A --> C ) )
3 feq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43feq2d 5325 . 2  |-  ( ph  ->  ( G : A --> C 
<->  G : B --> C ) )
52, 4bitrd 187 1  |-  ( ph  ->  ( F : A --> C 
<->  G : B --> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  feq123d  5328  smoeq  6258  lmbr2  12854  lmff  12889  limccl  13268  ellimc3apf  13269  bj-charfundcALT  13691
  Copyright terms: Public domain W3C validator