| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 |
|
| Ref | Expression |
|---|---|
| feq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 |
. 2
| |
| 2 | feq2 5408 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-fn 5273 df-f 5274 |
| This theorem is referenced by: feq12d 5414 ffdm 5445 fsng 5752 issmo2 6374 qliftf 6706 elpm2r 6752 casef 7189 fseq1p1m1 10215 fseq1m1p1 10216 seqf 10607 seqf2 10611 seqf1og 10664 iswrdinn0 10997 wrdf 10998 iswrdiz 10999 wrdffz 11013 wrdnval 11022 intopsn 13170 gsumprval 13202 resmhm 13290 gsumwsubmcl 13299 gsumwmhm 13301 isghm 13550 resghm 13567 psrelbasfi 14409 lmtopcnp 14693 ellimc3apf 15103 dvidlemap 15134 dvidrelem 15135 dvidsslem 15136 dviaddf 15148 dvimulf 15149 dvcjbr 15151 dvcj 15152 dvrecap 15156 dvmptclx 15161 |
| Copyright terms: Public domain | W3C validator |