| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 |
|
| Ref | Expression |
|---|---|
| feq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 |
. 2
| |
| 2 | feq2 5429 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-fn 5293 df-f 5294 |
| This theorem is referenced by: feq12d 5435 ffdm 5466 fsng 5776 issmo2 6398 qliftf 6730 elpm2r 6776 casef 7216 fseq1p1m1 10251 fseq1m1p1 10252 seqf 10646 seqf2 10650 seqf1og 10703 iswrdinn0 11036 wrdf 11037 iswrdiz 11038 wrdffz 11052 wrdnval 11061 swrdf 11146 swrdwrdsymbg 11155 cats1un 11212 intopsn 13314 gsumprval 13346 resmhm 13434 gsumwsubmcl 13443 gsumwmhm 13445 isghm 13694 resghm 13711 psrelbasfi 14553 lmtopcnp 14837 ellimc3apf 15247 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dviaddf 15292 dvimulf 15293 dvcjbr 15295 dvcj 15296 dvrecap 15300 dvmptclx 15305 uhgrm 15789 wrdupgren 15807 upgrfnen 15809 wrdumgren 15817 umgrfnen 15819 |
| Copyright terms: Public domain | W3C validator |