| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 |
|
| Ref | Expression |
|---|---|
| feq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 |
. 2
| |
| 2 | feq2 5392 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq12d 5398 ffdm 5429 fsng 5736 issmo2 6349 qliftf 6681 elpm2r 6727 casef 7156 fseq1p1m1 10172 fseq1m1p1 10173 seqf 10559 seqf2 10563 seqf1og 10616 iswrdinn0 10943 wrdf 10944 iswrdiz 10945 wrdffz 10959 wrdnval 10968 intopsn 13036 gsumprval 13068 resmhm 13145 gsumwsubmcl 13154 gsumwmhm 13156 isghm 13399 resghm 13416 lmtopcnp 14512 ellimc3apf 14922 dvidlemap 14953 dvidrelem 14954 dvidsslem 14955 dviaddf 14967 dvimulf 14968 dvcjbr 14970 dvcj 14971 dvrecap 14975 dvmptclx 14980 |
| Copyright terms: Public domain | W3C validator |