| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 |
|
| Ref | Expression |
|---|---|
| feq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 |
. 2
| |
| 2 | feq2 5409 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5274 df-f 5275 |
| This theorem is referenced by: feq12d 5415 ffdm 5446 fsng 5753 issmo2 6375 qliftf 6707 elpm2r 6753 casef 7190 fseq1p1m1 10216 fseq1m1p1 10217 seqf 10609 seqf2 10613 seqf1og 10666 iswrdinn0 10999 wrdf 11000 iswrdiz 11001 wrdffz 11015 wrdnval 11024 swrdf 11108 swrdwrdsymbg 11117 intopsn 13199 gsumprval 13231 resmhm 13319 gsumwsubmcl 13328 gsumwmhm 13330 isghm 13579 resghm 13596 psrelbasfi 14438 lmtopcnp 14722 ellimc3apf 15132 dvidlemap 15163 dvidrelem 15164 dvidsslem 15165 dviaddf 15177 dvimulf 15178 dvcjbr 15180 dvcj 15181 dvrecap 15185 dvmptclx 15190 |
| Copyright terms: Public domain | W3C validator |