| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq2d.1 |
|
| Ref | Expression |
|---|---|
| feq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 |
. 2
| |
| 2 | feq2 5456 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5320 df-f 5321 |
| This theorem is referenced by: feq12d 5462 ffdm 5493 fsng 5807 issmo2 6433 qliftf 6765 elpm2r 6811 casef 7251 fseq1p1m1 10286 fseq1m1p1 10287 seqf 10681 seqf2 10685 seqf1og 10738 iswrdinn0 11071 wrdf 11072 iswrdiz 11073 wrdffz 11087 ffz0iswrdnn0 11093 wrdnval 11097 swrdf 11182 swrdwrdsymbg 11191 cats1un 11248 s2dmg 11317 intopsn 13395 gsumprval 13427 resmhm 13515 gsumwsubmcl 13524 gsumwmhm 13526 isghm 13775 resghm 13792 psrelbasfi 14634 lmtopcnp 14918 ellimc3apf 15328 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dviaddf 15373 dvimulf 15374 dvcjbr 15376 dvcj 15377 dvrecap 15381 dvmptclx 15386 uhgrm 15872 wrdupgren 15890 upgrfnen 15892 wrdumgren 15900 umgrfnen 15902 |
| Copyright terms: Public domain | W3C validator |