ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2d Unicode version

Theorem feq2d 5335
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
feq2d  |-  ( ph  ->  ( F : A --> C 
<->  F : B --> C ) )

Proof of Theorem feq2d
StepHypRef Expression
1 feq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 feq2 5331 . 2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
31, 2syl 14 1  |-  ( ph  ->  ( F : A --> C 
<->  F : B --> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-fn 5201  df-f 5202
This theorem is referenced by:  feq12d  5337  ffdm  5368  fsng  5669  issmo2  6268  qliftf  6598  elpm2r  6644  casef  7065  fseq1p1m1  10050  fseq1m1p1  10051  seqf  10417  seqf2  10420  intopsn  12621  lmtopcnp  13044  ellimc3apf  13423  dvidlemap  13454  dviaddf  13463  dvimulf  13464  dvcjbr  13466  dvcj  13467  dvrecap  13471  dvmptclx  13474
  Copyright terms: Public domain W3C validator