| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > feq2d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| feq2d.1 | 
 | 
| Ref | Expression | 
|---|---|
| feq2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feq2d.1 | 
. 2
 | |
| 2 | feq2 5391 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: feq12d 5397 ffdm 5428 fsng 5735 issmo2 6347 qliftf 6679 elpm2r 6725 casef 7154 fseq1p1m1 10169 fseq1m1p1 10170 seqf 10556 seqf2 10560 seqf1og 10613 iswrdinn0 10940 wrdf 10941 iswrdiz 10942 wrdffz 10956 wrdnval 10965 intopsn 13010 gsumprval 13042 resmhm 13119 gsumwsubmcl 13128 gsumwmhm 13130 isghm 13373 resghm 13390 lmtopcnp 14486 ellimc3apf 14896 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dviaddf 14941 dvimulf 14942 dvcjbr 14944 dvcj 14945 dvrecap 14949 dvmptclx 14954 | 
| Copyright terms: Public domain | W3C validator |