ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq3d GIF version

Theorem feq3d 5438
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
Hypothesis
Ref Expression
feq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq3d (𝜑 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))

Proof of Theorem feq3d
StepHypRef Expression
1 feq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 feq3 5434 . 2 (𝐴 = 𝐵 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wf 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-in 3183  df-ss 3190  df-f 5298
This theorem is referenced by:  gsumress  13394  resmhm2b  13488  isghm  13746  uptx  14913  txcn  14914  dvply2g  15405  lgseisenlem3  15716  lgseisenlem4  15717  uhgr0vb  15849  uhgrun  15851  upgrun  15889  umgrun  15891
  Copyright terms: Public domain W3C validator