Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uptx | Unicode version |
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
uptx.1 | |
uptx.2 | |
uptx.3 | |
uptx.4 | |
uptx.5 | |
uptx.6 |
Ref | Expression |
---|---|
uptx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . 5 | |
2 | eqid 2165 | . . . . 5 | |
3 | 1, 2 | txcnmpt 12913 | . . . 4 |
4 | uptx.1 | . . . . 5 | |
5 | 4 | oveq2i 5853 | . . . 4 |
6 | 3, 5 | eleqtrrdi 2260 | . . 3 |
7 | uptx.2 | . . . . . 6 | |
8 | 1, 7 | cnf 12844 | . . . . 5 |
9 | uptx.3 | . . . . . 6 | |
10 | 1, 9 | cnf 12844 | . . . . 5 |
11 | ffn 5337 | . . . . . . . 8 | |
12 | 11 | adantr 274 | . . . . . . 7 |
13 | fo1st 6125 | . . . . . . . . . 10 | |
14 | fofn 5412 | . . . . . . . . . 10 | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 |
16 | ssv 3164 | . . . . . . . . 9 | |
17 | fnssres 5301 | . . . . . . . . 9 | |
18 | 15, 16, 17 | mp2an 423 | . . . . . . . 8 |
19 | ffvelrn 5618 | . . . . . . . . . . . 12 | |
20 | ffvelrn 5618 | . . . . . . . . . . . 12 | |
21 | opelxpi 4636 | . . . . . . . . . . . 12 | |
22 | 19, 20, 21 | syl2an 287 | . . . . . . . . . . 11 |
23 | 22 | anandirs 583 | . . . . . . . . . 10 |
24 | 23 | fmpttd 5640 | . . . . . . . . 9 |
25 | 24 | ffnd 5338 | . . . . . . . 8 |
26 | 24 | frnd 5347 | . . . . . . . 8 |
27 | fnco 5296 | . . . . . . . 8 | |
28 | 18, 25, 26, 27 | mp3an2i 1332 | . . . . . . 7 |
29 | fvco3 5557 | . . . . . . . . 9 | |
30 | 24, 29 | sylan 281 | . . . . . . . 8 |
31 | fveq2 5486 | . . . . . . . . . . 11 | |
32 | fveq2 5486 | . . . . . . . . . . 11 | |
33 | 31, 32 | opeq12d 3766 | . . . . . . . . . 10 |
34 | simpr 109 | . . . . . . . . . 10 | |
35 | simpll 519 | . . . . . . . . . . . 12 | |
36 | 35, 34 | ffvelrnd 5621 | . . . . . . . . . . 11 |
37 | simplr 520 | . . . . . . . . . . . 12 | |
38 | 37, 34 | ffvelrnd 5621 | . . . . . . . . . . 11 |
39 | 36, 38 | opelxpd 4637 | . . . . . . . . . 10 |
40 | 2, 33, 34, 39 | fvmptd3 5579 | . . . . . . . . 9 |
41 | 40 | fveq2d 5490 | . . . . . . . 8 |
42 | ffvelrn 5618 | . . . . . . . . . . . 12 | |
43 | ffvelrn 5618 | . . . . . . . . . . . 12 | |
44 | opelxpi 4636 | . . . . . . . . . . . 12 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . . 11 |
46 | 45 | anandirs 583 | . . . . . . . . . 10 |
47 | 46 | fvresd 5511 | . . . . . . . . 9 |
48 | op1stg 6118 | . . . . . . . . . 10 | |
49 | 36, 38, 48 | syl2anc 409 | . . . . . . . . 9 |
50 | 47, 49 | eqtrd 2198 | . . . . . . . 8 |
51 | 30, 41, 50 | 3eqtrrd 2203 | . . . . . . 7 |
52 | 12, 28, 51 | eqfnfvd 5586 | . . . . . 6 |
53 | uptx.5 | . . . . . . . 8 | |
54 | uptx.4 | . . . . . . . . 9 | |
55 | 54 | reseq2i 4881 | . . . . . . . 8 |
56 | 53, 55 | eqtri 2186 | . . . . . . 7 |
57 | 56 | coeq1i 4763 | . . . . . 6 |
58 | 52, 57 | eqtr4di 2217 | . . . . 5 |
59 | 8, 10, 58 | syl2an 287 | . . . 4 |
60 | ffn 5337 | . . . . . . . 8 | |
61 | 60 | adantl 275 | . . . . . . 7 |
62 | fo2nd 6126 | . . . . . . . . . 10 | |
63 | fofn 5412 | . . . . . . . . . 10 | |
64 | 62, 63 | ax-mp 5 | . . . . . . . . 9 |
65 | fnssres 5301 | . . . . . . . . 9 | |
66 | 64, 16, 65 | mp2an 423 | . . . . . . . 8 |
67 | fnco 5296 | . . . . . . . 8 | |
68 | 66, 25, 26, 67 | mp3an2i 1332 | . . . . . . 7 |
69 | fvco3 5557 | . . . . . . . . 9 | |
70 | 24, 69 | sylan 281 | . . . . . . . 8 |
71 | 40 | fveq2d 5490 | . . . . . . . 8 |
72 | 46 | fvresd 5511 | . . . . . . . . 9 |
73 | op2ndg 6119 | . . . . . . . . . 10 | |
74 | 36, 38, 73 | syl2anc 409 | . . . . . . . . 9 |
75 | 72, 74 | eqtrd 2198 | . . . . . . . 8 |
76 | 70, 71, 75 | 3eqtrrd 2203 | . . . . . . 7 |
77 | 61, 68, 76 | eqfnfvd 5586 | . . . . . 6 |
78 | uptx.6 | . . . . . . . 8 | |
79 | 54 | reseq2i 4881 | . . . . . . . 8 |
80 | 78, 79 | eqtri 2186 | . . . . . . 7 |
81 | 80 | coeq1i 4763 | . . . . . 6 |
82 | 77, 81 | eqtr4di 2217 | . . . . 5 |
83 | 8, 10, 82 | syl2an 287 | . . . 4 |
84 | 6, 59, 83 | jca32 308 | . . 3 |
85 | eleq1 2229 | . . . . 5 | |
86 | coeq2 4762 | . . . . . . 7 | |
87 | 86 | eqeq2d 2177 | . . . . . 6 |
88 | coeq2 4762 | . . . . . . 7 | |
89 | 88 | eqeq2d 2177 | . . . . . 6 |
90 | 87, 89 | anbi12d 465 | . . . . 5 |
91 | 85, 90 | anbi12d 465 | . . . 4 |
92 | 91 | spcegv 2814 | . . 3 |
93 | 6, 84, 92 | sylc 62 | . 2 |
94 | eqid 2165 | . . . . . . . 8 | |
95 | 1, 94 | cnf 12844 | . . . . . . 7 |
96 | cntop2 12842 | . . . . . . . . 9 | |
97 | cntop2 12842 | . . . . . . . . 9 | |
98 | 4 | unieqi 3799 | . . . . . . . . . 10 |
99 | 7, 9 | txuni 12903 | . . . . . . . . . 10 |
100 | 98, 99 | eqtr4id 2218 | . . . . . . . . 9 |
101 | 96, 97, 100 | syl2an 287 | . . . . . . . 8 |
102 | 101 | feq3d 5326 | . . . . . . 7 |
103 | 95, 102 | syl5ib 153 | . . . . . 6 |
104 | 103 | anim1d 334 | . . . . 5 |
105 | 3anass 972 | . . . . 5 | |
106 | 104, 105 | syl6ibr 161 | . . . 4 |
107 | 106 | alrimiv 1862 | . . 3 |
108 | cntop1 12841 | . . . . . 6 | |
109 | uniexg 4417 | . . . . . 6 | |
110 | 108, 109 | syl 14 | . . . . 5 |
111 | 56, 80 | upxp 12912 | . . . . 5 |
112 | 110, 8, 10, 111 | syl2an3an 1288 | . . . 4 |
113 | eumo 2046 | . . . 4 | |
114 | 112, 113 | syl 14 | . . 3 |
115 | moim 2078 | . . 3 | |
116 | 107, 114, 115 | sylc 62 | . 2 |
117 | df-reu 2451 | . . 3 | |
118 | eu5 2061 | . . 3 | |
119 | 117, 118 | bitri 183 | . 2 |
120 | 93, 116, 119 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wex 1480 weu 2014 wmo 2015 wcel 2136 wreu 2446 cvv 2726 wss 3116 cop 3579 cuni 3789 cmpt 4043 cxp 4602 crn 4605 cres 4606 ccom 4608 wfn 5183 wf 5184 wfo 5186 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 ctop 12635 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-tx 12893 |
This theorem is referenced by: txcn 12915 |
Copyright terms: Public domain | W3C validator |