| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uptx | Unicode version | ||
| Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| uptx.1 |
|
| uptx.2 |
|
| uptx.3 |
|
| uptx.4 |
|
| uptx.5 |
|
| uptx.6 |
|
| Ref | Expression |
|---|---|
| uptx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . . 5
| |
| 2 | eqid 2196 |
. . . . 5
| |
| 3 | 1, 2 | txcnmpt 14593 |
. . . 4
|
| 4 | uptx.1 |
. . . . 5
| |
| 5 | 4 | oveq2i 5936 |
. . . 4
|
| 6 | 3, 5 | eleqtrrdi 2290 |
. . 3
|
| 7 | uptx.2 |
. . . . . 6
| |
| 8 | 1, 7 | cnf 14524 |
. . . . 5
|
| 9 | uptx.3 |
. . . . . 6
| |
| 10 | 1, 9 | cnf 14524 |
. . . . 5
|
| 11 | ffn 5410 |
. . . . . . . 8
| |
| 12 | 11 | adantr 276 |
. . . . . . 7
|
| 13 | fo1st 6224 |
. . . . . . . . . 10
| |
| 14 | fofn 5485 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
|
| 16 | ssv 3206 |
. . . . . . . . 9
| |
| 17 | fnssres 5374 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | mp2an 426 |
. . . . . . . 8
|
| 19 | ffvelcdm 5698 |
. . . . . . . . . . . 12
| |
| 20 | ffvelcdm 5698 |
. . . . . . . . . . . 12
| |
| 21 | opelxpi 4696 |
. . . . . . . . . . . 12
| |
| 22 | 19, 20, 21 | syl2an 289 |
. . . . . . . . . . 11
|
| 23 | 22 | anandirs 593 |
. . . . . . . . . 10
|
| 24 | 23 | fmpttd 5720 |
. . . . . . . . 9
|
| 25 | 24 | ffnd 5411 |
. . . . . . . 8
|
| 26 | 24 | frnd 5420 |
. . . . . . . 8
|
| 27 | fnco 5369 |
. . . . . . . 8
| |
| 28 | 18, 25, 26, 27 | mp3an2i 1353 |
. . . . . . 7
|
| 29 | fvco3 5635 |
. . . . . . . . 9
| |
| 30 | 24, 29 | sylan 283 |
. . . . . . . 8
|
| 31 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 32 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | opeq12d 3817 |
. . . . . . . . . 10
|
| 34 | simpr 110 |
. . . . . . . . . 10
| |
| 35 | simpll 527 |
. . . . . . . . . . . 12
| |
| 36 | 35, 34 | ffvelcdmd 5701 |
. . . . . . . . . . 11
|
| 37 | simplr 528 |
. . . . . . . . . . . 12
| |
| 38 | 37, 34 | ffvelcdmd 5701 |
. . . . . . . . . . 11
|
| 39 | 36, 38 | opelxpd 4697 |
. . . . . . . . . 10
|
| 40 | 2, 33, 34, 39 | fvmptd3 5658 |
. . . . . . . . 9
|
| 41 | 40 | fveq2d 5565 |
. . . . . . . 8
|
| 42 | ffvelcdm 5698 |
. . . . . . . . . . . 12
| |
| 43 | ffvelcdm 5698 |
. . . . . . . . . . . 12
| |
| 44 | opelxpi 4696 |
. . . . . . . . . . . 12
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . . 11
|
| 46 | 45 | anandirs 593 |
. . . . . . . . . 10
|
| 47 | 46 | fvresd 5586 |
. . . . . . . . 9
|
| 48 | op1stg 6217 |
. . . . . . . . . 10
| |
| 49 | 36, 38, 48 | syl2anc 411 |
. . . . . . . . 9
|
| 50 | 47, 49 | eqtrd 2229 |
. . . . . . . 8
|
| 51 | 30, 41, 50 | 3eqtrrd 2234 |
. . . . . . 7
|
| 52 | 12, 28, 51 | eqfnfvd 5665 |
. . . . . 6
|
| 53 | uptx.5 |
. . . . . . . 8
| |
| 54 | uptx.4 |
. . . . . . . . 9
| |
| 55 | 54 | reseq2i 4944 |
. . . . . . . 8
|
| 56 | 53, 55 | eqtri 2217 |
. . . . . . 7
|
| 57 | 56 | coeq1i 4826 |
. . . . . 6
|
| 58 | 52, 57 | eqtr4di 2247 |
. . . . 5
|
| 59 | 8, 10, 58 | syl2an 289 |
. . . 4
|
| 60 | ffn 5410 |
. . . . . . . 8
| |
| 61 | 60 | adantl 277 |
. . . . . . 7
|
| 62 | fo2nd 6225 |
. . . . . . . . . 10
| |
| 63 | fofn 5485 |
. . . . . . . . . 10
| |
| 64 | 62, 63 | ax-mp 5 |
. . . . . . . . 9
|
| 65 | fnssres 5374 |
. . . . . . . . 9
| |
| 66 | 64, 16, 65 | mp2an 426 |
. . . . . . . 8
|
| 67 | fnco 5369 |
. . . . . . . 8
| |
| 68 | 66, 25, 26, 67 | mp3an2i 1353 |
. . . . . . 7
|
| 69 | fvco3 5635 |
. . . . . . . . 9
| |
| 70 | 24, 69 | sylan 283 |
. . . . . . . 8
|
| 71 | 40 | fveq2d 5565 |
. . . . . . . 8
|
| 72 | 46 | fvresd 5586 |
. . . . . . . . 9
|
| 73 | op2ndg 6218 |
. . . . . . . . . 10
| |
| 74 | 36, 38, 73 | syl2anc 411 |
. . . . . . . . 9
|
| 75 | 72, 74 | eqtrd 2229 |
. . . . . . . 8
|
| 76 | 70, 71, 75 | 3eqtrrd 2234 |
. . . . . . 7
|
| 77 | 61, 68, 76 | eqfnfvd 5665 |
. . . . . 6
|
| 78 | uptx.6 |
. . . . . . . 8
| |
| 79 | 54 | reseq2i 4944 |
. . . . . . . 8
|
| 80 | 78, 79 | eqtri 2217 |
. . . . . . 7
|
| 81 | 80 | coeq1i 4826 |
. . . . . 6
|
| 82 | 77, 81 | eqtr4di 2247 |
. . . . 5
|
| 83 | 8, 10, 82 | syl2an 289 |
. . . 4
|
| 84 | 6, 59, 83 | jca32 310 |
. . 3
|
| 85 | eleq1 2259 |
. . . . 5
| |
| 86 | coeq2 4825 |
. . . . . . 7
| |
| 87 | 86 | eqeq2d 2208 |
. . . . . 6
|
| 88 | coeq2 4825 |
. . . . . . 7
| |
| 89 | 88 | eqeq2d 2208 |
. . . . . 6
|
| 90 | 87, 89 | anbi12d 473 |
. . . . 5
|
| 91 | 85, 90 | anbi12d 473 |
. . . 4
|
| 92 | 91 | spcegv 2852 |
. . 3
|
| 93 | 6, 84, 92 | sylc 62 |
. 2
|
| 94 | eqid 2196 |
. . . . . . . 8
| |
| 95 | 1, 94 | cnf 14524 |
. . . . . . 7
|
| 96 | cntop2 14522 |
. . . . . . . . 9
| |
| 97 | cntop2 14522 |
. . . . . . . . 9
| |
| 98 | 4 | unieqi 3850 |
. . . . . . . . . 10
|
| 99 | 7, 9 | txuni 14583 |
. . . . . . . . . 10
|
| 100 | 98, 99 | eqtr4id 2248 |
. . . . . . . . 9
|
| 101 | 96, 97, 100 | syl2an 289 |
. . . . . . . 8
|
| 102 | 101 | feq3d 5399 |
. . . . . . 7
|
| 103 | 95, 102 | imbitrid 154 |
. . . . . 6
|
| 104 | 103 | anim1d 336 |
. . . . 5
|
| 105 | 3anass 984 |
. . . . 5
| |
| 106 | 104, 105 | imbitrrdi 162 |
. . . 4
|
| 107 | 106 | alrimiv 1888 |
. . 3
|
| 108 | cntop1 14521 |
. . . . . 6
| |
| 109 | uniexg 4475 |
. . . . . 6
| |
| 110 | 108, 109 | syl 14 |
. . . . 5
|
| 111 | 56, 80 | upxp 14592 |
. . . . 5
|
| 112 | 110, 8, 10, 111 | syl2an3an 1309 |
. . . 4
|
| 113 | eumo 2077 |
. . . 4
| |
| 114 | 112, 113 | syl 14 |
. . 3
|
| 115 | moim 2109 |
. . 3
| |
| 116 | 107, 114, 115 | sylc 62 |
. 2
|
| 117 | df-reu 2482 |
. . 3
| |
| 118 | eu5 2092 |
. . 3
| |
| 119 | 117, 118 | bitri 184 |
. 2
|
| 120 | 93, 116, 119 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-topgen 12962 df-top 14318 df-topon 14331 df-bases 14363 df-cn 14508 df-tx 14573 |
| This theorem is referenced by: txcn 14595 |
| Copyright terms: Public domain | W3C validator |