ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uptx Unicode version

Theorem uptx 14510
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1  |-  T  =  ( R  tX  S
)
uptx.2  |-  X  = 
U. R
uptx.3  |-  Y  = 
U. S
uptx.4  |-  Z  =  ( X  X.  Y
)
uptx.5  |-  P  =  ( 1st  |`  Z )
uptx.6  |-  Q  =  ( 2nd  |`  Z )
Assertion
Ref Expression
uptx  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Distinct variable groups:    h, F    h, G    P, h    Q, h    R, h    T, h    S, h    U, h    h, X   
h, Y
Allowed substitution hint:    Z( h)

Proof of Theorem uptx
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  U. U  =  U. U
2 eqid 2196 . . . . 5  |-  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  =  ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)
31, 2txcnmpt 14509 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  ( R  tX  S ) ) )
4 uptx.1 . . . . 5  |-  T  =  ( R  tX  S
)
54oveq2i 5933 . . . 4  |-  ( U  Cn  T )  =  ( U  Cn  ( R  tX  S ) )
63, 5eleqtrrdi 2290 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) )
7 uptx.2 . . . . . 6  |-  X  = 
U. R
81, 7cnf 14440 . . . . 5  |-  ( F  e.  ( U  Cn  R )  ->  F : U. U --> X )
9 uptx.3 . . . . . 6  |-  Y  = 
U. S
101, 9cnf 14440 . . . . 5  |-  ( G  e.  ( U  Cn  S )  ->  G : U. U --> Y )
11 ffn 5407 . . . . . . . 8  |-  ( F : U. U --> X  ->  F  Fn  U. U )
1211adantr 276 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  Fn  U. U )
13 fo1st 6215 . . . . . . . . . 10  |-  1st : _V -onto-> _V
14 fofn 5482 . . . . . . . . . 10  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1513, 14ax-mp 5 . . . . . . . . 9  |-  1st  Fn  _V
16 ssv 3205 . . . . . . . . 9  |-  ( X  X.  Y )  C_  _V
17 fnssres 5371 . . . . . . . . 9  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
1815, 16, 17mp2an 426 . . . . . . . 8  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
19 ffvelcdm 5695 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  x  e.  U. U )  ->  ( F `  x )  e.  X )
20 ffvelcdm 5695 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  x  e.  U. U )  ->  ( G `  x )  e.  Y )
21 opelxpi 4695 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  X  /\  ( G `  x )  e.  Y )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2219, 20, 21syl2an 289 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  x  e. 
U. U )  /\  ( G : U. U --> Y  /\  x  e.  U. U ) )  ->  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( X  X.  Y
) )
2322anandirs 593 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  x  e.  U. U )  ->  <. ( F `  x ) ,  ( G `  x )
>.  e.  ( X  X.  Y ) )
2423fmpttd 5717 . . . . . . . . 9  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) : U. U --> ( X  X.  Y
) )
2524ffnd 5408 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U
)
2624frnd 5417 . . . . . . . 8  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  ran  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  C_  ( X  X.  Y ) )
27 fnco 5366 . . . . . . . 8  |-  ( ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
2818, 25, 26, 27mp3an2i 1353 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
29 fvco3 5632 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
3024, 29sylan 283 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 1st  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
31 fveq2 5558 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
32 fveq2 5558 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
3331, 32opeq12d 3816 . . . . . . . . . 10  |-  ( x  =  z  ->  <. ( F `  x ) ,  ( G `  x ) >.  =  <. ( F `  z ) ,  ( G `  z ) >. )
34 simpr 110 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  z  e.  U. U )
35 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  F : U. U
--> X )
3635, 34ffvelcdmd 5698 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( F `  z )  e.  X
)
37 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  G : U. U
--> Y )
3837, 34ffvelcdmd 5698 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( G `  z )  e.  Y
)
3936, 38opelxpd 4696 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  <. ( F `  z ) ,  ( G `  z )
>.  e.  ( X  X.  Y ) )
402, 33, 34, 39fvmptd3 5655 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
) `  z )  =  <. ( F `  z ) ,  ( G `  z )
>. )
4140fveq2d 5562 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 1st  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
42 ffvelcdm 5695 . . . . . . . . . . . 12  |-  ( ( F : U. U --> X  /\  z  e.  U. U )  ->  ( F `  z )  e.  X )
43 ffvelcdm 5695 . . . . . . . . . . . 12  |-  ( ( G : U. U --> Y  /\  z  e.  U. U )  ->  ( G `  z )  e.  Y )
44 opelxpi 4695 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  e.  X  /\  ( G `  z )  e.  Y )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4542, 43, 44syl2an 289 . . . . . . . . . . 11  |-  ( ( ( F : U. U
--> X  /\  z  e. 
U. U )  /\  ( G : U. U --> Y  /\  z  e.  U. U ) )  ->  <. ( F `  z
) ,  ( G `
 z ) >.  e.  ( X  X.  Y
) )
4645anandirs 593 . . . . . . . . . 10  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  <. ( F `  z ) ,  ( G `  z )
>.  e.  ( X  X.  Y ) )
4746fvresd 5583 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )
)
48 op1stg 6208 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  X  /\  ( G `  z )  e.  Y )  -> 
( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
4936, 38, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( 1st `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
5047, 49eqtrd 2229 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 1st  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( F `  z ) )
5130, 41, 503eqtrrd 2234 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( F `  z )  =  ( ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
5212, 28, 51eqfnfvd 5662 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( ( 1st  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
53 uptx.5 . . . . . . . 8  |-  P  =  ( 1st  |`  Z )
54 uptx.4 . . . . . . . . 9  |-  Z  =  ( X  X.  Y
)
5554reseq2i 4943 . . . . . . . 8  |-  ( 1st  |`  Z )  =  ( 1st  |`  ( X  X.  Y ) )
5653, 55eqtri 2217 . . . . . . 7  |-  P  =  ( 1st  |`  ( X  X.  Y ) )
5756coeq1i 4825 . . . . . 6  |-  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 1st  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
5852, 57eqtr4di 2247 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
598, 10, 58syl2an 289 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
60 ffn 5407 . . . . . . . 8  |-  ( G : U. U --> Y  ->  G  Fn  U. U )
6160adantl 277 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  Fn  U. U )
62 fo2nd 6216 . . . . . . . . . 10  |-  2nd : _V -onto-> _V
63 fofn 5482 . . . . . . . . . 10  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
6462, 63ax-mp 5 . . . . . . . . 9  |-  2nd  Fn  _V
65 fnssres 5371 . . . . . . . . 9  |-  ( ( 2nd  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
6664, 16, 65mp2an 426 . . . . . . . 8  |-  ( 2nd  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
67 fnco 5366 . . . . . . . 8  |-  ( ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y )  /\  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  Fn  U. U  /\  ran  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  C_  ( X  X.  Y
) )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
6866, 25, 26, 67mp3an2i 1353 . . . . . . 7  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  (
( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  Fn  U. U
)
69 fvco3 5632 . . . . . . . . 9  |-  ( ( ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) : U. U --> ( X  X.  Y
)  /\  z  e.  U. U )  ->  (
( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )  =  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) ) )
7024, 69sylan 283 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) `  z
)  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  ( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. ) `  z ) ) )
7140fveq2d 5562 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  (
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) `  z ) )  =  ( ( 2nd  |`  ( X  X.  Y ) ) `  <. ( F `  z
) ,  ( G `
 z ) >.
) )
7246fvresd 5583 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )
)
73 op2ndg 6209 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  X  /\  ( G `  z )  e.  Y )  -> 
( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
7436, 38, 73syl2anc 411 . . . . . . . . 9  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( 2nd `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
7572, 74eqtrd 2229 . . . . . . . 8  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( ( 2nd  |`  ( X  X.  Y
) ) `  <. ( F `  z ) ,  ( G `  z ) >. )  =  ( G `  z ) )
7670, 71, 753eqtrrd 2234 . . . . . . 7  |-  ( ( ( F : U. U
--> X  /\  G : U. U --> Y )  /\  z  e.  U. U )  ->  ( G `  z )  =  ( ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) `  z )
)
7761, 68, 76eqfnfvd 5662 . . . . . 6  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( ( 2nd  |`  ( X  X.  Y
) )  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
78 uptx.6 . . . . . . . 8  |-  Q  =  ( 2nd  |`  Z )
7954reseq2i 4943 . . . . . . . 8  |-  ( 2nd  |`  Z )  =  ( 2nd  |`  ( X  X.  Y ) )
8078, 79eqtri 2217 . . . . . . 7  |-  Q  =  ( 2nd  |`  ( X  X.  Y ) )
8180coeq1i 4825 . . . . . 6  |-  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  =  ( ( 2nd  |`  ( X  X.  Y ) )  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) )
8277, 81eqtr4di 2247 . . . . 5  |-  ( ( F : U. U --> X  /\  G : U. U
--> Y )  ->  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) )
838, 10, 82syl2an 289 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G  =  ( Q  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. ) ) )
846, 59, 83jca32 310 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
85 eleq1 2259 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( h  e.  ( U  Cn  T )  <-> 
( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x )
>. )  e.  ( U  Cn  T ) ) )
86 coeq2 4824 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( P  o.  h
)  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
8786eqeq2d 2208 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( F  =  ( P  o.  h )  <-> 
F  =  ( P  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
88 coeq2 4824 . . . . . . 7  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( Q  o.  h
)  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) )
8988eqeq2d 2208 . . . . . 6  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( G  =  ( Q  o.  h )  <-> 
G  =  ( Q  o.  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
) ) )
9087, 89anbi12d 473 . . . . 5  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) )
9185, 90anbi12d 473 . . . 4  |-  ( h  =  ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  ->  ( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( ( x  e. 
U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) )  /\  G  =  ( Q  o.  ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) ) ) )
9291spcegv 2852 . . 3  |-  ( ( x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  -> 
( ( ( x  e.  U. U  |->  <.
( F `  x
) ,  ( G `
 x ) >.
)  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  ( x  e.  U. U  |->  <. ( F `  x ) ,  ( G `  x ) >. )
)  /\  G  =  ( Q  o.  (
x  e.  U. U  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
) ) ) )  ->  E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
936, 84, 92sylc 62 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
94 eqid 2196 . . . . . . . 8  |-  U. T  =  U. T
951, 94cnf 14440 . . . . . . 7  |-  ( h  e.  ( U  Cn  T )  ->  h : U. U --> U. T
)
96 cntop2 14438 . . . . . . . . 9  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  Top )
97 cntop2 14438 . . . . . . . . 9  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  Top )
984unieqi 3849 . . . . . . . . . 10  |-  U. T  =  U. ( R  tX  S )
997, 9txuni 14499 . . . . . . . . . 10  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
10098, 99eqtr4id 2248 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  U. T  =  ( X  X.  Y ) )
10196, 97, 100syl2an 289 . . . . . . . 8  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U. T  =  ( X  X.  Y ) )
102101feq3d 5396 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h : U. U
--> U. T  <->  h : U. U --> ( X  X.  Y ) ) )
10395, 102imbitrid 154 . . . . . 6  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( h  e.  ( U  Cn  T )  ->  h : U. U
--> ( X  X.  Y
) ) )
104103anim1d 336 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
105 3anass 984 . . . . 5  |-  ( ( h : U. U --> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  <->  ( h : U. U --> ( X  X.  Y )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) )
106104, 105imbitrrdi 162 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
107106alrimiv 1888 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
108 cntop1 14437 . . . . . 6  |-  ( F  e.  ( U  Cn  R )  ->  U  e.  Top )
109 uniexg 4474 . . . . . 6  |-  ( U  e.  Top  ->  U. U  e.  _V )
110108, 109syl 14 . . . . 5  |-  ( F  e.  ( U  Cn  R )  ->  U. U  e.  _V )
11156, 80upxp 14508 . . . . 5  |-  ( ( U. U  e.  _V  /\  F : U. U --> X  /\  G : U. U
--> Y )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
112110, 8, 10, 111syl2an3an 1309 . . . 4  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
113 eumo 2077 . . . 4  |-  ( E! h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
114112, 113syl 14 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
115 moim 2109 . . 3  |-  ( A. h ( ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( h : U. U --> ( X  X.  Y )  /\  F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  ->  ( E* h
( h : U. U
--> ( X  X.  Y
)  /\  F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
116107, 114, 115sylc 62 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) )
117 df-reu 2482 . . 3  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  E! h
( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h
)  /\  G  =  ( Q  o.  h
) ) ) )
118 eu5 2092 . . 3  |-  ( E! h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  <-> 
( E. h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) )  /\  E* h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) ) ) )
119117, 118bitri 184 . 2  |-  ( E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) )  <->  ( E. h ( h  e.  ( U  Cn  T
)  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )  /\  E* h ( h  e.  ( U  Cn  T )  /\  ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h )
) ) ) )
12093, 116, 119sylanbrc 417 1  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045   E*wmo 2046    e. wcel 2167   E!wreu 2477   _Vcvv 2763    C_ wss 3157   <.cop 3625   U.cuni 3839    |-> cmpt 4094    X. cxp 4661   ran crn 4664    |` cres 4665    o. ccom 4667    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Topctop 14233    Cn ccn 14421    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-tx 14489
This theorem is referenced by:  txcn  14511
  Copyright terms: Public domain W3C validator