ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12d Unicode version

Theorem fneq12d 5279
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1  |-  ( ph  ->  F  =  G )
fneq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq12d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fneq1d 5277 . 2  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
3 fneq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fneq2d 5278 . 2  |-  ( ph  ->  ( G  Fn  A  <->  G  Fn  B ) )
52, 4bitrd 187 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    Fn wfn 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-fun 5189  df-fn 5190
This theorem is referenced by:  fneq12  5280  tfrlemi1  6296
  Copyright terms: Public domain W3C validator