Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq12d | Unicode version |
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.) |
Ref | Expression |
---|---|
fneq12d.1 | |
fneq12d.2 |
Ref | Expression |
---|---|
fneq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq12d.1 | . . 3 | |
2 | 1 | fneq1d 5290 | . 2 |
3 | fneq12d.2 | . . 3 | |
4 | 3 | fneq2d 5291 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1349 wfn 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-v 2733 df-un 3126 df-in 3128 df-ss 3135 df-sn 3590 df-pr 3591 df-op 3593 df-br 3991 df-opab 4052 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-fun 5202 df-fn 5203 |
This theorem is referenced by: fneq12 5293 tfrlemi1 6315 |
Copyright terms: Public domain | W3C validator |