ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12d Unicode version

Theorem fneq12d 5292
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1  |-  ( ph  ->  F  =  G )
fneq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq12d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fneq1d 5290 . 2  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
3 fneq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fneq2d 5291 . 2  |-  ( ph  ->  ( G  Fn  A  <->  G  Fn  B ) )
52, 4bitrd 187 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1349    Fn wfn 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-v 2733  df-un 3126  df-in 3128  df-ss 3135  df-sn 3590  df-pr 3591  df-op 3593  df-br 3991  df-opab 4052  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-fun 5202  df-fn 5203
This theorem is referenced by:  fneq12  5293  tfrlemi1  6315
  Copyright terms: Public domain W3C validator