ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12d Unicode version

Theorem fneq12d 5385
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1  |-  ( ph  ->  F  =  G )
fneq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq12d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fneq1d 5383 . 2  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
3 fneq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fneq2d 5384 . 2  |-  ( ph  ->  ( G  Fn  A  <->  G  Fn  B ) )
52, 4bitrd 188 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by:  fneq12  5386  tfrlemi1  6441
  Copyright terms: Public domain W3C validator