ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12d Unicode version

Theorem fneq12d 5412
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1  |-  ( ph  ->  F  =  G )
fneq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq12d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fneq1d 5410 . 2  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
3 fneq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fneq2d 5411 . 2  |-  ( ph  ->  ( G  Fn  A  <->  G  Fn  B ) )
52, 4bitrd 188 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by:  fneq12  5413  tfrlemi1  6476
  Copyright terms: Public domain W3C validator