ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft Unicode version

Theorem seq3shft 10849
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex  |-  ( ph  ->  F  e.  V )
seq3shft.m  |-  ( ph  ->  M  e.  ZZ )
seq3shft.n  |-  ( ph  ->  N  e.  ZZ )
seq3shft.fn  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
seq3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Distinct variable groups:    x, F, y   
x, M, y    x, N, y    x,  .+ , y    x, S, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seq3shft
Dummy variables  a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3shft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3shft.ex . . . . . . 7  |-  ( ph  ->  F  e.  V )
43adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  F  e.  V )
5 seq3shft.n . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 9378 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
76adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
8 eluzelz 9539 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
98adantl 277 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
109zcnd 9378 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  CC )
11 shftvalg 10847 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  x  e.  CC )  ->  (
( F  shift  N ) `
 x )  =  ( F `  (
x  -  N ) ) )
124, 7, 10, 11syl3anc 1238 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  =  ( F `  ( x  -  N ) ) )
13 fveq2 5517 . . . . . . 7  |-  ( a  =  ( x  -  N )  ->  ( F `  a )  =  ( F `  ( x  -  N
) ) )
1413eleq1d 2246 . . . . . 6  |-  ( a  =  ( x  -  N )  ->  (
( F `  a
)  e.  S  <->  ( F `  ( x  -  N
) )  e.  S
) )
15 seq3shft.fn . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
1615ralrimiva 2550 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  x )  e.  S )
17 fveq2 5517 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1817eleq1d 2246 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
1918cbvralv 2705 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  -  N
) ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2016, 19sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  ( ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
222, 5zsubcld 9382 . . . . . . . 8  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
2322adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  e.  ZZ )
245adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
259, 24zsubcld 9382 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  ZZ )
262zred 9377 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
289zred 9377 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
2924zred 9377 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  RR )
30 eluzle 9542 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
3130adantl 277 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
3227, 28, 29, 31lesub1dd 8520 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  <_  (
x  -  N ) )
33 eluz2 9536 . . . . . . 7  |-  ( ( x  -  N )  e.  ( ZZ>= `  ( M  -  N )
)  <->  ( ( M  -  N )  e.  ZZ  /\  ( x  -  N )  e.  ZZ  /\  ( M  -  N )  <_ 
( x  -  N
) ) )
3423, 25, 32, 33syl3anbrc 1181 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) )
3514, 21, 34rspcdva 2848 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  ( x  -  N
) )  e.  S
)
3612, 35eqeltrd 2254 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
37 seq3shft.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
381, 2, 36, 37seqf 10463 . . 3  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) ) : (
ZZ>= `  M ) --> S )
3938ffnd 5368 . 2  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
40 eqid 2177 . . . . . 6  |-  ( ZZ>= `  ( M  -  N
) )  =  (
ZZ>= `  ( M  -  N ) )
4140, 22, 15, 37seqf 10463 . . . . 5  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F ) : (
ZZ>= `  ( M  -  N ) ) --> S )
4241ffnd 5368 . . . 4  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
43 seqex 10449 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
4443shftfn 10835 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
4542, 6, 44syl2anc 411 . . 3  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
46 shftuz 10828 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
475, 22, 46syl2anc 411 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
482zcnd 9378 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
4948, 6npcand 8274 . . . . . 6  |-  ( ph  ->  ( ( M  -  N )  +  N
)  =  M )
5049fveq2d 5521 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
5147, 50eqtrd 2210 . . . 4  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
5251fneq2d 5309 . . 3  |-  ( ph  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
5345, 52mpbid 147 . 2  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
5448, 6negsubd 8276 . . . . . 6  |-  ( ph  ->  ( M  +  -u N )  =  ( M  -  N ) )
5554adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
5655seqeq1d 10453 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  seq ( M  +  -u N ) (  .+  ,  F
)  =  seq ( M  -  N )
(  .+  ,  F
) )
57 eluzelcn 9541 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
5857adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  CC )
596adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
6058, 59negsubd 8276 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( z  +  -u N )  =  ( z  -  N
) )
6156, 60fveq12d 5524 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq ( M  +  -u N
) (  .+  ,  F ) `  (
z  +  -u N
) )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
62 simpr 110 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
635adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
6463znegcld 9379 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  -u N  e.  ZZ )
653ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  F  e.  V )
6659adantr 276 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  N  e.  CC )
67 elfzelz 10027 . . . . . . . 8  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
6867adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  ZZ )
6968zcnd 9378 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  CC )
70 shftvalg 10847 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  y  e.  CC )  ->  (
( F  shift  N ) `
 y )  =  ( F `  (
y  -  N ) ) )
7165, 66, 69, 70syl3anc 1238 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N ) ) )
7269, 66negsubd 8276 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( y  +  -u N )  =  ( y  -  N
) )
7372fveq2d 5521 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( F `  ( y  +  -u N ) )  =  ( F `  (
y  -  N ) ) )
7471, 73eqtr4d 2213 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
7536adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
76 simpll 527 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ph )
77 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )
7854fveq2d 5521 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( M  +  -u N ) )  =  ( ZZ>= `  ( M  -  N )
) )
7978eleq2d 2247 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( M  +  -u N ) )  <->  x  e.  ( ZZ>= `  ( M  -  N ) ) ) )
8079ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( x  e.  ( ZZ>= `  ( M  +  -u N ) )  <-> 
x  e.  ( ZZ>= `  ( M  -  N
) ) ) )
8177, 80mpbid 147 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  -  N ) ) )
8276, 81, 15syl2anc 411 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( F `  x )  e.  S
)
8337adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8462, 64, 74, 75, 82, 83seq3shft2 10475 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) ) )
85 shftvalg 10847 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  e.  _V  /\  N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
8643, 59, 58, 85mp3an2i 1342 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
8761, 84, 863eqtr4d 2220 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z ) )
8839, 53, 87eqfnfvd 5618 1  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2739   class class class wbr 4005    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812    + caddc 7816    <_ cle 7995    - cmin 8130   -ucneg 8131   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447    shift cshi 10825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-seqfrec 10448  df-shft 10826
This theorem is referenced by:  iser3shft  11356  eftlub  11700
  Copyright terms: Public domain W3C validator