ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft Unicode version

Theorem seq3shft 10642
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex  |-  ( ph  ->  F  e.  V )
seq3shft.m  |-  ( ph  ->  M  e.  ZZ )
seq3shft.n  |-  ( ph  ->  N  e.  ZZ )
seq3shft.fn  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
seq3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Distinct variable groups:    x, F, y   
x, M, y    x, N, y    x,  .+ , y    x, S, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seq3shft
Dummy variables  a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3shft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3shft.ex . . . . . . 7  |-  ( ph  ->  F  e.  V )
43adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  F  e.  V )
5 seq3shft.n . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 9198 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
76adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
8 eluzelz 9359 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
98adantl 275 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
109zcnd 9198 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  CC )
11 shftvalg 10640 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  x  e.  CC )  ->  (
( F  shift  N ) `
 x )  =  ( F `  (
x  -  N ) ) )
124, 7, 10, 11syl3anc 1217 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  =  ( F `  ( x  -  N ) ) )
13 fveq2 5429 . . . . . . 7  |-  ( a  =  ( x  -  N )  ->  ( F `  a )  =  ( F `  ( x  -  N
) ) )
1413eleq1d 2209 . . . . . 6  |-  ( a  =  ( x  -  N )  ->  (
( F `  a
)  e.  S  <->  ( F `  ( x  -  N
) )  e.  S
) )
15 seq3shft.fn . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
1615ralrimiva 2508 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  x )  e.  S )
17 fveq2 5429 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1817eleq1d 2209 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
1918cbvralv 2657 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  -  N
) ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2016, 19sylib 121 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2120adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  ( ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
222, 5zsubcld 9202 . . . . . . . 8  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
2322adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  e.  ZZ )
245adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
259, 24zsubcld 9202 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  ZZ )
262zred 9197 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2726adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
289zred 9197 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
2924zred 9197 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  RR )
30 eluzle 9362 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
3130adantl 275 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
3227, 28, 29, 31lesub1dd 8347 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  <_  (
x  -  N ) )
33 eluz2 9356 . . . . . . 7  |-  ( ( x  -  N )  e.  ( ZZ>= `  ( M  -  N )
)  <->  ( ( M  -  N )  e.  ZZ  /\  ( x  -  N )  e.  ZZ  /\  ( M  -  N )  <_ 
( x  -  N
) ) )
3423, 25, 32, 33syl3anbrc 1166 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) )
3514, 21, 34rspcdva 2798 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  ( x  -  N
) )  e.  S
)
3612, 35eqeltrd 2217 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
37 seq3shft.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
381, 2, 36, 37seqf 10265 . . 3  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) ) : (
ZZ>= `  M ) --> S )
3938ffnd 5281 . 2  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
40 eqid 2140 . . . . . 6  |-  ( ZZ>= `  ( M  -  N
) )  =  (
ZZ>= `  ( M  -  N ) )
4140, 22, 15, 37seqf 10265 . . . . 5  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F ) : (
ZZ>= `  ( M  -  N ) ) --> S )
4241ffnd 5281 . . . 4  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
43 seqex 10251 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
4443shftfn 10628 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
4542, 6, 44syl2anc 409 . . 3  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
46 shftuz 10621 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
475, 22, 46syl2anc 409 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
482zcnd 9198 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
4948, 6npcand 8101 . . . . . 6  |-  ( ph  ->  ( ( M  -  N )  +  N
)  =  M )
5049fveq2d 5433 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
5147, 50eqtrd 2173 . . . 4  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
5251fneq2d 5222 . . 3  |-  ( ph  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
5345, 52mpbid 146 . 2  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
5448, 6negsubd 8103 . . . . . 6  |-  ( ph  ->  ( M  +  -u N )  =  ( M  -  N ) )
5554adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
5655seqeq1d 10255 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  seq ( M  +  -u N ) (  .+  ,  F
)  =  seq ( M  -  N )
(  .+  ,  F
) )
57 eluzelcn 9361 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
5857adantl 275 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  CC )
596adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
6058, 59negsubd 8103 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( z  +  -u N )  =  ( z  -  N
) )
6156, 60fveq12d 5436 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq ( M  +  -u N
) (  .+  ,  F ) `  (
z  +  -u N
) )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
62 simpr 109 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
635adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
6463znegcld 9199 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  -u N  e.  ZZ )
653ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  F  e.  V )
6659adantr 274 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  N  e.  CC )
67 elfzelz 9837 . . . . . . . 8  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
6867adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  ZZ )
6968zcnd 9198 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  CC )
70 shftvalg 10640 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  y  e.  CC )  ->  (
( F  shift  N ) `
 y )  =  ( F `  (
y  -  N ) ) )
7165, 66, 69, 70syl3anc 1217 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N ) ) )
7269, 66negsubd 8103 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( y  +  -u N )  =  ( y  -  N
) )
7372fveq2d 5433 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( F `  ( y  +  -u N ) )  =  ( F `  (
y  -  N ) ) )
7471, 73eqtr4d 2176 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
7536adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
76 simpll 519 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ph )
77 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )
7854fveq2d 5433 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( M  +  -u N ) )  =  ( ZZ>= `  ( M  -  N )
) )
7978eleq2d 2210 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( M  +  -u N ) )  <->  x  e.  ( ZZ>= `  ( M  -  N ) ) ) )
8079ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( x  e.  ( ZZ>= `  ( M  +  -u N ) )  <-> 
x  e.  ( ZZ>= `  ( M  -  N
) ) ) )
8177, 80mpbid 146 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  -  N ) ) )
8276, 81, 15syl2anc 409 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( F `  x )  e.  S
)
8337adantlr 469 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8462, 64, 74, 75, 82, 83seq3shft2 10277 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) ) )
85 shftvalg 10640 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  e.  _V  /\  N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
8643, 59, 58, 85mp3an2i 1321 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
8761, 84, 863eqtr4d 2183 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z ) )
8839, 53, 87eqfnfvd 5529 1  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421   _Vcvv 2689   class class class wbr 3937    Fn wfn 5126   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643    + caddc 7647    <_ cle 7825    - cmin 7957   -ucneg 7958   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249    shift cshi 10618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250  df-shft 10619
This theorem is referenced by:  iser3shft  11147  eftlub  11433
  Copyright terms: Public domain W3C validator