ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft Unicode version

Theorem seq3shft 11003
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex  |-  ( ph  ->  F  e.  V )
seq3shft.m  |-  ( ph  ->  M  e.  ZZ )
seq3shft.n  |-  ( ph  ->  N  e.  ZZ )
seq3shft.fn  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
seq3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Distinct variable groups:    x, F, y   
x, M, y    x, N, y    x,  .+ , y    x, S, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seq3shft
Dummy variables  a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3shft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3shft.ex . . . . . . 7  |-  ( ph  ->  F  e.  V )
43adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  F  e.  V )
5 seq3shft.n . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 9449 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
76adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
8 eluzelz 9610 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
98adantl 277 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
109zcnd 9449 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  CC )
11 shftvalg 11001 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  x  e.  CC )  ->  (
( F  shift  N ) `
 x )  =  ( F `  (
x  -  N ) ) )
124, 7, 10, 11syl3anc 1249 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  =  ( F `  ( x  -  N ) ) )
13 fveq2 5558 . . . . . . 7  |-  ( a  =  ( x  -  N )  ->  ( F `  a )  =  ( F `  ( x  -  N
) ) )
1413eleq1d 2265 . . . . . 6  |-  ( a  =  ( x  -  N )  ->  (
( F `  a
)  e.  S  <->  ( F `  ( x  -  N
) )  e.  S
) )
15 seq3shft.fn . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
1615ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  x )  e.  S )
17 fveq2 5558 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1817eleq1d 2265 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
1918cbvralv 2729 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  -  N
) ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2016, 19sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  ( ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
222, 5zsubcld 9453 . . . . . . . 8  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
2322adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  e.  ZZ )
245adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
259, 24zsubcld 9453 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  ZZ )
262zred 9448 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
289zred 9448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
2924zred 9448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  RR )
30 eluzle 9613 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
3130adantl 277 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
3227, 28, 29, 31lesub1dd 8588 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  <_  (
x  -  N ) )
33 eluz2 9607 . . . . . . 7  |-  ( ( x  -  N )  e.  ( ZZ>= `  ( M  -  N )
)  <->  ( ( M  -  N )  e.  ZZ  /\  ( x  -  N )  e.  ZZ  /\  ( M  -  N )  <_ 
( x  -  N
) ) )
3423, 25, 32, 33syl3anbrc 1183 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) )
3514, 21, 34rspcdva 2873 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  ( x  -  N
) )  e.  S
)
3612, 35eqeltrd 2273 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
37 seq3shft.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
381, 2, 36, 37seqf 10556 . . 3  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) ) : (
ZZ>= `  M ) --> S )
3938ffnd 5408 . 2  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
40 eqid 2196 . . . . . 6  |-  ( ZZ>= `  ( M  -  N
) )  =  (
ZZ>= `  ( M  -  N ) )
4140, 22, 15, 37seqf 10556 . . . . 5  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F ) : (
ZZ>= `  ( M  -  N ) ) --> S )
4241ffnd 5408 . . . 4  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
43 seqex 10541 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
4443shftfn 10989 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
4542, 6, 44syl2anc 411 . . 3  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
46 shftuz 10982 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
475, 22, 46syl2anc 411 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
482zcnd 9449 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
4948, 6npcand 8341 . . . . . 6  |-  ( ph  ->  ( ( M  -  N )  +  N
)  =  M )
5049fveq2d 5562 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
5147, 50eqtrd 2229 . . . 4  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
5251fneq2d 5349 . . 3  |-  ( ph  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
5345, 52mpbid 147 . 2  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
5448, 6negsubd 8343 . . . . . 6  |-  ( ph  ->  ( M  +  -u N )  =  ( M  -  N ) )
5554adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
5655seqeq1d 10545 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  seq ( M  +  -u N ) (  .+  ,  F
)  =  seq ( M  -  N )
(  .+  ,  F
) )
57 eluzelcn 9612 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
5857adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  CC )
596adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
6058, 59negsubd 8343 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( z  +  -u N )  =  ( z  -  N
) )
6156, 60fveq12d 5565 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq ( M  +  -u N
) (  .+  ,  F ) `  (
z  +  -u N
) )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
62 simpr 110 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
635adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
6463znegcld 9450 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  -u N  e.  ZZ )
653ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  F  e.  V )
6659adantr 276 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  N  e.  CC )
67 elfzelz 10100 . . . . . . . 8  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
6867adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  ZZ )
6968zcnd 9449 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  CC )
70 shftvalg 11001 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  y  e.  CC )  ->  (
( F  shift  N ) `
 y )  =  ( F `  (
y  -  N ) ) )
7165, 66, 69, 70syl3anc 1249 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N ) ) )
7269, 66negsubd 8343 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( y  +  -u N )  =  ( y  -  N
) )
7372fveq2d 5562 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( F `  ( y  +  -u N ) )  =  ( F `  (
y  -  N ) ) )
7471, 73eqtr4d 2232 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
7536adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
76 simpll 527 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ph )
77 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )
7854fveq2d 5562 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( M  +  -u N ) )  =  ( ZZ>= `  ( M  -  N )
) )
7978eleq2d 2266 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( M  +  -u N ) )  <->  x  e.  ( ZZ>= `  ( M  -  N ) ) ) )
8079ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( x  e.  ( ZZ>= `  ( M  +  -u N ) )  <-> 
x  e.  ( ZZ>= `  ( M  -  N
) ) ) )
8177, 80mpbid 147 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  -  N ) ) )
8276, 81, 15syl2anc 411 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( F `  x )  e.  S
)
8337adantlr 477 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8462, 64, 74, 75, 82, 83seq3shft2 10573 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) ) )
85 shftvalg 11001 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  e.  _V  /\  N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
8643, 59, 58, 85mp3an2i 1353 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
8761, 84, 863eqtr4d 2239 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z ) )
8839, 53, 87eqfnfvd 5662 1  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763   class class class wbr 4033    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878    + caddc 7882    <_ cle 8062    - cmin 8197   -ucneg 8198   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    shift cshi 10979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-shft 10980
This theorem is referenced by:  iser3shft  11511  eftlub  11855
  Copyright terms: Public domain W3C validator