| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3shft | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3shft.ex |
|
| seq3shft.m |
|
| seq3shft.n |
|
| seq3shft.fn |
|
| seq3shft.pl |
|
| Ref | Expression |
|---|---|
| seq3shft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . 4
| |
| 2 | seq3shft.m |
. . . 4
| |
| 3 | seq3shft.ex |
. . . . . . 7
| |
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | seq3shft.n |
. . . . . . . 8
| |
| 6 | 5 | zcnd 9531 |
. . . . . . 7
|
| 7 | 6 | adantr 276 |
. . . . . 6
|
| 8 | eluzelz 9692 |
. . . . . . . 8
| |
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | zcnd 9531 |
. . . . . 6
|
| 11 | shftvalg 11262 |
. . . . . 6
| |
| 12 | 4, 7, 10, 11 | syl3anc 1250 |
. . . . 5
|
| 13 | fveq2 5599 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2276 |
. . . . . 6
|
| 15 | seq3shft.fn |
. . . . . . . . 9
| |
| 16 | 15 | ralrimiva 2581 |
. . . . . . . 8
|
| 17 | fveq2 5599 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2276 |
. . . . . . . . 9
|
| 19 | 18 | cbvralv 2742 |
. . . . . . . 8
|
| 20 | 16, 19 | sylib 122 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 2, 5 | zsubcld 9535 |
. . . . . . . 8
|
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 5 | adantr 276 |
. . . . . . . 8
|
| 25 | 9, 24 | zsubcld 9535 |
. . . . . . 7
|
| 26 | 2 | zred 9530 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 9 | zred 9530 |
. . . . . . . 8
|
| 29 | 24 | zred 9530 |
. . . . . . . 8
|
| 30 | eluzle 9695 |
. . . . . . . . 9
| |
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | 27, 28, 29, 31 | lesub1dd 8669 |
. . . . . . 7
|
| 33 | eluz2 9689 |
. . . . . . 7
| |
| 34 | 23, 25, 32, 33 | syl3anbrc 1184 |
. . . . . 6
|
| 35 | 14, 21, 34 | rspcdva 2889 |
. . . . 5
|
| 36 | 12, 35 | eqeltrd 2284 |
. . . 4
|
| 37 | seq3shft.pl |
. . . 4
| |
| 38 | 1, 2, 36, 37 | seqf 10646 |
. . 3
|
| 39 | 38 | ffnd 5446 |
. 2
|
| 40 | eqid 2207 |
. . . . . 6
| |
| 41 | 40, 22, 15, 37 | seqf 10646 |
. . . . 5
|
| 42 | 41 | ffnd 5446 |
. . . 4
|
| 43 | seqex 10631 |
. . . . 5
| |
| 44 | 43 | shftfn 11250 |
. . . 4
|
| 45 | 42, 6, 44 | syl2anc 411 |
. . 3
|
| 46 | shftuz 11243 |
. . . . . 6
| |
| 47 | 5, 22, 46 | syl2anc 411 |
. . . . 5
|
| 48 | 2 | zcnd 9531 |
. . . . . . 7
|
| 49 | 48, 6 | npcand 8422 |
. . . . . 6
|
| 50 | 49 | fveq2d 5603 |
. . . . 5
|
| 51 | 47, 50 | eqtrd 2240 |
. . . 4
|
| 52 | 51 | fneq2d 5384 |
. . 3
|
| 53 | 45, 52 | mpbid 147 |
. 2
|
| 54 | 48, 6 | negsubd 8424 |
. . . . . 6
|
| 55 | 54 | adantr 276 |
. . . . 5
|
| 56 | 55 | seqeq1d 10635 |
. . . 4
|
| 57 | eluzelcn 9694 |
. . . . . 6
| |
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | 6 | adantr 276 |
. . . . 5
|
| 60 | 58, 59 | negsubd 8424 |
. . . 4
|
| 61 | 56, 60 | fveq12d 5606 |
. . 3
|
| 62 | simpr 110 |
. . . 4
| |
| 63 | 5 | adantr 276 |
. . . . 5
|
| 64 | 63 | znegcld 9532 |
. . . 4
|
| 65 | 3 | ad2antrr 488 |
. . . . . 6
|
| 66 | 59 | adantr 276 |
. . . . . 6
|
| 67 | elfzelz 10182 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 68 | zcnd 9531 |
. . . . . 6
|
| 70 | shftvalg 11262 |
. . . . . 6
| |
| 71 | 65, 66, 69, 70 | syl3anc 1250 |
. . . . 5
|
| 72 | 69, 66 | negsubd 8424 |
. . . . . 6
|
| 73 | 72 | fveq2d 5603 |
. . . . 5
|
| 74 | 71, 73 | eqtr4d 2243 |
. . . 4
|
| 75 | 36 | adantlr 477 |
. . . 4
|
| 76 | simpll 527 |
. . . . 5
| |
| 77 | simpr 110 |
. . . . . 6
| |
| 78 | 54 | fveq2d 5603 |
. . . . . . . 8
|
| 79 | 78 | eleq2d 2277 |
. . . . . . 7
|
| 80 | 79 | ad2antrr 488 |
. . . . . 6
|
| 81 | 77, 80 | mpbid 147 |
. . . . 5
|
| 82 | 76, 81, 15 | syl2anc 411 |
. . . 4
|
| 83 | 37 | adantlr 477 |
. . . 4
|
| 84 | 62, 64, 74, 75, 82, 83 | seq3shft2 10663 |
. . 3
|
| 85 | shftvalg 11262 |
. . . 4
| |
| 86 | 43, 59, 58, 85 | mp3an2i 1355 |
. . 3
|
| 87 | 61, 84, 86 | 3eqtr4d 2250 |
. 2
|
| 88 | 39, 53, 87 | eqfnfvd 5703 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-shft 11241 |
| This theorem is referenced by: iser3shft 11772 eftlub 12116 |
| Copyright terms: Public domain | W3C validator |