| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3shft | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3shft.ex |
|
| seq3shft.m |
|
| seq3shft.n |
|
| seq3shft.fn |
|
| seq3shft.pl |
|
| Ref | Expression |
|---|---|
| seq3shft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | seq3shft.m |
. . . 4
| |
| 3 | seq3shft.ex |
. . . . . . 7
| |
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | seq3shft.n |
. . . . . . . 8
| |
| 6 | 5 | zcnd 9570 |
. . . . . . 7
|
| 7 | 6 | adantr 276 |
. . . . . 6
|
| 8 | eluzelz 9731 |
. . . . . . . 8
| |
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | zcnd 9570 |
. . . . . 6
|
| 11 | shftvalg 11347 |
. . . . . 6
| |
| 12 | 4, 7, 10, 11 | syl3anc 1271 |
. . . . 5
|
| 13 | fveq2 5627 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2298 |
. . . . . 6
|
| 15 | seq3shft.fn |
. . . . . . . . 9
| |
| 16 | 15 | ralrimiva 2603 |
. . . . . . . 8
|
| 17 | fveq2 5627 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2298 |
. . . . . . . . 9
|
| 19 | 18 | cbvralv 2765 |
. . . . . . . 8
|
| 20 | 16, 19 | sylib 122 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 2, 5 | zsubcld 9574 |
. . . . . . . 8
|
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 5 | adantr 276 |
. . . . . . . 8
|
| 25 | 9, 24 | zsubcld 9574 |
. . . . . . 7
|
| 26 | 2 | zred 9569 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 9 | zred 9569 |
. . . . . . . 8
|
| 29 | 24 | zred 9569 |
. . . . . . . 8
|
| 30 | eluzle 9734 |
. . . . . . . . 9
| |
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | 27, 28, 29, 31 | lesub1dd 8708 |
. . . . . . 7
|
| 33 | eluz2 9728 |
. . . . . . 7
| |
| 34 | 23, 25, 32, 33 | syl3anbrc 1205 |
. . . . . 6
|
| 35 | 14, 21, 34 | rspcdva 2912 |
. . . . 5
|
| 36 | 12, 35 | eqeltrd 2306 |
. . . 4
|
| 37 | seq3shft.pl |
. . . 4
| |
| 38 | 1, 2, 36, 37 | seqf 10686 |
. . 3
|
| 39 | 38 | ffnd 5474 |
. 2
|
| 40 | eqid 2229 |
. . . . . 6
| |
| 41 | 40, 22, 15, 37 | seqf 10686 |
. . . . 5
|
| 42 | 41 | ffnd 5474 |
. . . 4
|
| 43 | seqex 10671 |
. . . . 5
| |
| 44 | 43 | shftfn 11335 |
. . . 4
|
| 45 | 42, 6, 44 | syl2anc 411 |
. . 3
|
| 46 | shftuz 11328 |
. . . . . 6
| |
| 47 | 5, 22, 46 | syl2anc 411 |
. . . . 5
|
| 48 | 2 | zcnd 9570 |
. . . . . . 7
|
| 49 | 48, 6 | npcand 8461 |
. . . . . 6
|
| 50 | 49 | fveq2d 5631 |
. . . . 5
|
| 51 | 47, 50 | eqtrd 2262 |
. . . 4
|
| 52 | 51 | fneq2d 5412 |
. . 3
|
| 53 | 45, 52 | mpbid 147 |
. 2
|
| 54 | 48, 6 | negsubd 8463 |
. . . . . 6
|
| 55 | 54 | adantr 276 |
. . . . 5
|
| 56 | 55 | seqeq1d 10675 |
. . . 4
|
| 57 | eluzelcn 9733 |
. . . . . 6
| |
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | 6 | adantr 276 |
. . . . 5
|
| 60 | 58, 59 | negsubd 8463 |
. . . 4
|
| 61 | 56, 60 | fveq12d 5634 |
. . 3
|
| 62 | simpr 110 |
. . . 4
| |
| 63 | 5 | adantr 276 |
. . . . 5
|
| 64 | 63 | znegcld 9571 |
. . . 4
|
| 65 | 3 | ad2antrr 488 |
. . . . . 6
|
| 66 | 59 | adantr 276 |
. . . . . 6
|
| 67 | elfzelz 10221 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 68 | zcnd 9570 |
. . . . . 6
|
| 70 | shftvalg 11347 |
. . . . . 6
| |
| 71 | 65, 66, 69, 70 | syl3anc 1271 |
. . . . 5
|
| 72 | 69, 66 | negsubd 8463 |
. . . . . 6
|
| 73 | 72 | fveq2d 5631 |
. . . . 5
|
| 74 | 71, 73 | eqtr4d 2265 |
. . . 4
|
| 75 | 36 | adantlr 477 |
. . . 4
|
| 76 | simpll 527 |
. . . . 5
| |
| 77 | simpr 110 |
. . . . . 6
| |
| 78 | 54 | fveq2d 5631 |
. . . . . . . 8
|
| 79 | 78 | eleq2d 2299 |
. . . . . . 7
|
| 80 | 79 | ad2antrr 488 |
. . . . . 6
|
| 81 | 77, 80 | mpbid 147 |
. . . . 5
|
| 82 | 76, 81, 15 | syl2anc 411 |
. . . 4
|
| 83 | 37 | adantlr 477 |
. . . 4
|
| 84 | 62, 64, 74, 75, 82, 83 | seq3shft2 10703 |
. . 3
|
| 85 | shftvalg 11347 |
. . . 4
| |
| 86 | 43, 59, 58, 85 | mp3an2i 1376 |
. . 3
|
| 87 | 61, 84, 86 | 3eqtr4d 2272 |
. 2
|
| 88 | 39, 53, 87 | eqfnfvd 5735 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-seqfrec 10670 df-shft 11326 |
| This theorem is referenced by: iser3shft 11857 eftlub 12201 |
| Copyright terms: Public domain | W3C validator |