| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3shft | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| seq3shft.ex | 
 | 
| seq3shft.m | 
 | 
| seq3shft.n | 
 | 
| seq3shft.fn | 
 | 
| seq3shft.pl | 
 | 
| Ref | Expression | 
|---|---|
| seq3shft | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . . 4
 | |
| 2 | seq3shft.m | 
. . . 4
 | |
| 3 | seq3shft.ex | 
. . . . . . 7
 | |
| 4 | 3 | adantr 276 | 
. . . . . 6
 | 
| 5 | seq3shft.n | 
. . . . . . . 8
 | |
| 6 | 5 | zcnd 9449 | 
. . . . . . 7
 | 
| 7 | 6 | adantr 276 | 
. . . . . 6
 | 
| 8 | eluzelz 9610 | 
. . . . . . . 8
 | |
| 9 | 8 | adantl 277 | 
. . . . . . 7
 | 
| 10 | 9 | zcnd 9449 | 
. . . . . 6
 | 
| 11 | shftvalg 11001 | 
. . . . . 6
 | |
| 12 | 4, 7, 10, 11 | syl3anc 1249 | 
. . . . 5
 | 
| 13 | fveq2 5558 | 
. . . . . . 7
 | |
| 14 | 13 | eleq1d 2265 | 
. . . . . 6
 | 
| 15 | seq3shft.fn | 
. . . . . . . . 9
 | |
| 16 | 15 | ralrimiva 2570 | 
. . . . . . . 8
 | 
| 17 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 18 | 17 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 19 | 18 | cbvralv 2729 | 
. . . . . . . 8
 | 
| 20 | 16, 19 | sylib 122 | 
. . . . . . 7
 | 
| 21 | 20 | adantr 276 | 
. . . . . 6
 | 
| 22 | 2, 5 | zsubcld 9453 | 
. . . . . . . 8
 | 
| 23 | 22 | adantr 276 | 
. . . . . . 7
 | 
| 24 | 5 | adantr 276 | 
. . . . . . . 8
 | 
| 25 | 9, 24 | zsubcld 9453 | 
. . . . . . 7
 | 
| 26 | 2 | zred 9448 | 
. . . . . . . . 9
 | 
| 27 | 26 | adantr 276 | 
. . . . . . . 8
 | 
| 28 | 9 | zred 9448 | 
. . . . . . . 8
 | 
| 29 | 24 | zred 9448 | 
. . . . . . . 8
 | 
| 30 | eluzle 9613 | 
. . . . . . . . 9
 | |
| 31 | 30 | adantl 277 | 
. . . . . . . 8
 | 
| 32 | 27, 28, 29, 31 | lesub1dd 8588 | 
. . . . . . 7
 | 
| 33 | eluz2 9607 | 
. . . . . . 7
 | |
| 34 | 23, 25, 32, 33 | syl3anbrc 1183 | 
. . . . . 6
 | 
| 35 | 14, 21, 34 | rspcdva 2873 | 
. . . . 5
 | 
| 36 | 12, 35 | eqeltrd 2273 | 
. . . 4
 | 
| 37 | seq3shft.pl | 
. . . 4
 | |
| 38 | 1, 2, 36, 37 | seqf 10556 | 
. . 3
 | 
| 39 | 38 | ffnd 5408 | 
. 2
 | 
| 40 | eqid 2196 | 
. . . . . 6
 | |
| 41 | 40, 22, 15, 37 | seqf 10556 | 
. . . . 5
 | 
| 42 | 41 | ffnd 5408 | 
. . . 4
 | 
| 43 | seqex 10541 | 
. . . . 5
 | |
| 44 | 43 | shftfn 10989 | 
. . . 4
 | 
| 45 | 42, 6, 44 | syl2anc 411 | 
. . 3
 | 
| 46 | shftuz 10982 | 
. . . . . 6
 | |
| 47 | 5, 22, 46 | syl2anc 411 | 
. . . . 5
 | 
| 48 | 2 | zcnd 9449 | 
. . . . . . 7
 | 
| 49 | 48, 6 | npcand 8341 | 
. . . . . 6
 | 
| 50 | 49 | fveq2d 5562 | 
. . . . 5
 | 
| 51 | 47, 50 | eqtrd 2229 | 
. . . 4
 | 
| 52 | 51 | fneq2d 5349 | 
. . 3
 | 
| 53 | 45, 52 | mpbid 147 | 
. 2
 | 
| 54 | 48, 6 | negsubd 8343 | 
. . . . . 6
 | 
| 55 | 54 | adantr 276 | 
. . . . 5
 | 
| 56 | 55 | seqeq1d 10545 | 
. . . 4
 | 
| 57 | eluzelcn 9612 | 
. . . . . 6
 | |
| 58 | 57 | adantl 277 | 
. . . . 5
 | 
| 59 | 6 | adantr 276 | 
. . . . 5
 | 
| 60 | 58, 59 | negsubd 8343 | 
. . . 4
 | 
| 61 | 56, 60 | fveq12d 5565 | 
. . 3
 | 
| 62 | simpr 110 | 
. . . 4
 | |
| 63 | 5 | adantr 276 | 
. . . . 5
 | 
| 64 | 63 | znegcld 9450 | 
. . . 4
 | 
| 65 | 3 | ad2antrr 488 | 
. . . . . 6
 | 
| 66 | 59 | adantr 276 | 
. . . . . 6
 | 
| 67 | elfzelz 10100 | 
. . . . . . . 8
 | |
| 68 | 67 | adantl 277 | 
. . . . . . 7
 | 
| 69 | 68 | zcnd 9449 | 
. . . . . 6
 | 
| 70 | shftvalg 11001 | 
. . . . . 6
 | |
| 71 | 65, 66, 69, 70 | syl3anc 1249 | 
. . . . 5
 | 
| 72 | 69, 66 | negsubd 8343 | 
. . . . . 6
 | 
| 73 | 72 | fveq2d 5562 | 
. . . . 5
 | 
| 74 | 71, 73 | eqtr4d 2232 | 
. . . 4
 | 
| 75 | 36 | adantlr 477 | 
. . . 4
 | 
| 76 | simpll 527 | 
. . . . 5
 | |
| 77 | simpr 110 | 
. . . . . 6
 | |
| 78 | 54 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 79 | 78 | eleq2d 2266 | 
. . . . . . 7
 | 
| 80 | 79 | ad2antrr 488 | 
. . . . . 6
 | 
| 81 | 77, 80 | mpbid 147 | 
. . . . 5
 | 
| 82 | 76, 81, 15 | syl2anc 411 | 
. . . 4
 | 
| 83 | 37 | adantlr 477 | 
. . . 4
 | 
| 84 | 62, 64, 74, 75, 82, 83 | seq3shft2 10573 | 
. . 3
 | 
| 85 | shftvalg 11001 | 
. . . 4
 | |
| 86 | 43, 59, 58, 85 | mp3an2i 1353 | 
. . 3
 | 
| 87 | 61, 84, 86 | 3eqtr4d 2239 | 
. 2
 | 
| 88 | 39, 53, 87 | eqfnfvd 5662 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-shft 10980 | 
| This theorem is referenced by: iser3shft 11511 eftlub 11855 | 
| Copyright terms: Public domain | W3C validator |