ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft Unicode version

Theorem seq3shft 10260
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex  |-  ( ph  ->  F  e.  V )
seq3shft.m  |-  ( ph  ->  M  e.  ZZ )
seq3shft.n  |-  ( ph  ->  N  e.  ZZ )
seq3shft.fn  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
seq3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Distinct variable groups:    x, F, y   
x, M, y    x, N, y    x,  .+ , y    x, S, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seq3shft
Dummy variables  a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3shft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3shft.ex . . . . . . 7  |-  ( ph  ->  F  e.  V )
43adantr 270 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  F  e.  V )
5 seq3shft.n . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 8859 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
76adantr 270 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
8 eluzelz 9018 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
98adantl 271 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
109zcnd 8859 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  CC )
11 shftvalg 10258 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  x  e.  CC )  ->  (
( F  shift  N ) `
 x )  =  ( F `  (
x  -  N ) ) )
124, 7, 10, 11syl3anc 1174 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  =  ( F `  ( x  -  N ) ) )
13 fveq2 5299 . . . . . . 7  |-  ( a  =  ( x  -  N )  ->  ( F `  a )  =  ( F `  ( x  -  N
) ) )
1413eleq1d 2156 . . . . . 6  |-  ( a  =  ( x  -  N )  ->  (
( F `  a
)  e.  S  <->  ( F `  ( x  -  N
) )  e.  S
) )
15 seq3shft.fn . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
1615ralrimiva 2446 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  x )  e.  S )
17 fveq2 5299 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1817eleq1d 2156 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
1918cbvralv 2590 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  -  N
) ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2016, 19sylib 120 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2120adantr 270 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  ( ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
222, 5zsubcld 8863 . . . . . . . 8  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
2322adantr 270 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  e.  ZZ )
245adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
259, 24zsubcld 8863 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  ZZ )
262zred 8858 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2726adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
289zred 8858 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
2924zred 8858 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  RR )
30 eluzle 9021 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
3130adantl 271 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
3227, 28, 29, 31lesub1dd 8028 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  <_  (
x  -  N ) )
33 eluz2 9015 . . . . . . 7  |-  ( ( x  -  N )  e.  ( ZZ>= `  ( M  -  N )
)  <->  ( ( M  -  N )  e.  ZZ  /\  ( x  -  N )  e.  ZZ  /\  ( M  -  N )  <_ 
( x  -  N
) ) )
3423, 25, 32, 33syl3anbrc 1127 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) )
3514, 21, 34rspcdva 2727 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  ( x  -  N
) )  e.  S
)
3612, 35eqeltrd 2164 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
37 seq3shft.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
381, 2, 36, 37seqf 9868 . . 3  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) ) : (
ZZ>= `  M ) --> S )
3938ffnd 5156 . 2  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
40 eqid 2088 . . . . . 6  |-  ( ZZ>= `  ( M  -  N
) )  =  (
ZZ>= `  ( M  -  N ) )
4140, 22, 15, 37seqf 9868 . . . . 5  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F ) : (
ZZ>= `  ( M  -  N ) ) --> S )
4241ffnd 5156 . . . 4  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
43 seqex 9845 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
4443shftfn 10246 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
4542, 6, 44syl2anc 403 . . 3  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
46 shftuz 10239 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
475, 22, 46syl2anc 403 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
482zcnd 8859 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
4948, 6npcand 7787 . . . . . 6  |-  ( ph  ->  ( ( M  -  N )  +  N
)  =  M )
5049fveq2d 5303 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
5147, 50eqtrd 2120 . . . 4  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
5251fneq2d 5099 . . 3  |-  ( ph  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
5345, 52mpbid 145 . 2  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
5448, 6negsubd 7789 . . . . . 6  |-  ( ph  ->  ( M  +  -u N )  =  ( M  -  N ) )
5554adantr 270 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
5655seqeq1d 9852 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  seq ( M  +  -u N ) (  .+  ,  F
)  =  seq ( M  -  N )
(  .+  ,  F
) )
57 eluzelcn 9020 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
5857adantl 271 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  CC )
596adantr 270 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
6058, 59negsubd 7789 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( z  +  -u N )  =  ( z  -  N
) )
6156, 60fveq12d 5306 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq ( M  +  -u N
) (  .+  ,  F ) `  (
z  +  -u N
) )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
62 simpr 108 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
635adantr 270 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
6463znegcld 8860 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  -u N  e.  ZZ )
653ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  F  e.  V )
6659adantr 270 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  N  e.  CC )
67 elfzelz 9430 . . . . . . . 8  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
6867adantl 271 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  ZZ )
6968zcnd 8859 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  CC )
70 shftvalg 10258 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  y  e.  CC )  ->  (
( F  shift  N ) `
 y )  =  ( F `  (
y  -  N ) ) )
7165, 66, 69, 70syl3anc 1174 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N ) ) )
7269, 66negsubd 7789 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( y  +  -u N )  =  ( y  -  N
) )
7372fveq2d 5303 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( F `  ( y  +  -u N ) )  =  ( F `  (
y  -  N ) ) )
7471, 73eqtr4d 2123 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
7536adantlr 461 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
76 simpll 496 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ph )
77 simpr 108 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )
7854fveq2d 5303 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( M  +  -u N ) )  =  ( ZZ>= `  ( M  -  N )
) )
7978eleq2d 2157 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( M  +  -u N ) )  <->  x  e.  ( ZZ>= `  ( M  -  N ) ) ) )
8079ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( x  e.  ( ZZ>= `  ( M  +  -u N ) )  <-> 
x  e.  ( ZZ>= `  ( M  -  N
) ) ) )
8177, 80mpbid 145 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  -  N ) ) )
8276, 81, 15syl2anc 403 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( F `  x )  e.  S
)
8337adantlr 461 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8462, 64, 74, 75, 82, 83seq3shft2 9887 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) ) )
85 shftvalg 10258 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  e.  _V  /\  N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
8643, 59, 58, 85mp3an2i 1278 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
8761, 84, 863eqtr4d 2130 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z ) )
8839, 53, 87eqfnfvd 5394 1  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   {crab 2363   _Vcvv 2619   class class class wbr 3843    Fn wfn 5005   ` cfv 5010  (class class class)co 5644   CCcc 7338   RRcr 7339    + caddc 7343    <_ cle 7513    - cmin 7643   -ucneg 7644   ZZcz 8740   ZZ>=cuz 9009   ...cfz 9414    seqcseq 9840    shift cshi 10236
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-addass 7437  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-ltadd 7451
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-iord 4191  df-on 4193  df-ilim 4194  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-frec 6148  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-inn 8413  df-n0 8664  df-z 8741  df-uz 9010  df-fz 9415  df-iseq 9841  df-seq3 9842  df-shft 10237
This theorem is referenced by:  iser3shft  10722  eftlub  10967
  Copyright terms: Public domain W3C validator