| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3shft | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3shft.ex |
|
| seq3shft.m |
|
| seq3shft.n |
|
| seq3shft.fn |
|
| seq3shft.pl |
|
| Ref | Expression |
|---|---|
| seq3shft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . 4
| |
| 2 | seq3shft.m |
. . . 4
| |
| 3 | seq3shft.ex |
. . . . . . 7
| |
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | seq3shft.n |
. . . . . . . 8
| |
| 6 | 5 | zcnd 9496 |
. . . . . . 7
|
| 7 | 6 | adantr 276 |
. . . . . 6
|
| 8 | eluzelz 9657 |
. . . . . . . 8
| |
| 9 | 8 | adantl 277 |
. . . . . . 7
|
| 10 | 9 | zcnd 9496 |
. . . . . 6
|
| 11 | shftvalg 11147 |
. . . . . 6
| |
| 12 | 4, 7, 10, 11 | syl3anc 1250 |
. . . . 5
|
| 13 | fveq2 5576 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2274 |
. . . . . 6
|
| 15 | seq3shft.fn |
. . . . . . . . 9
| |
| 16 | 15 | ralrimiva 2579 |
. . . . . . . 8
|
| 17 | fveq2 5576 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2274 |
. . . . . . . . 9
|
| 19 | 18 | cbvralv 2738 |
. . . . . . . 8
|
| 20 | 16, 19 | sylib 122 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 2, 5 | zsubcld 9500 |
. . . . . . . 8
|
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 5 | adantr 276 |
. . . . . . . 8
|
| 25 | 9, 24 | zsubcld 9500 |
. . . . . . 7
|
| 26 | 2 | zred 9495 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 9 | zred 9495 |
. . . . . . . 8
|
| 29 | 24 | zred 9495 |
. . . . . . . 8
|
| 30 | eluzle 9660 |
. . . . . . . . 9
| |
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | 27, 28, 29, 31 | lesub1dd 8634 |
. . . . . . 7
|
| 33 | eluz2 9654 |
. . . . . . 7
| |
| 34 | 23, 25, 32, 33 | syl3anbrc 1184 |
. . . . . 6
|
| 35 | 14, 21, 34 | rspcdva 2882 |
. . . . 5
|
| 36 | 12, 35 | eqeltrd 2282 |
. . . 4
|
| 37 | seq3shft.pl |
. . . 4
| |
| 38 | 1, 2, 36, 37 | seqf 10609 |
. . 3
|
| 39 | 38 | ffnd 5426 |
. 2
|
| 40 | eqid 2205 |
. . . . . 6
| |
| 41 | 40, 22, 15, 37 | seqf 10609 |
. . . . 5
|
| 42 | 41 | ffnd 5426 |
. . . 4
|
| 43 | seqex 10594 |
. . . . 5
| |
| 44 | 43 | shftfn 11135 |
. . . 4
|
| 45 | 42, 6, 44 | syl2anc 411 |
. . 3
|
| 46 | shftuz 11128 |
. . . . . 6
| |
| 47 | 5, 22, 46 | syl2anc 411 |
. . . . 5
|
| 48 | 2 | zcnd 9496 |
. . . . . . 7
|
| 49 | 48, 6 | npcand 8387 |
. . . . . 6
|
| 50 | 49 | fveq2d 5580 |
. . . . 5
|
| 51 | 47, 50 | eqtrd 2238 |
. . . 4
|
| 52 | 51 | fneq2d 5365 |
. . 3
|
| 53 | 45, 52 | mpbid 147 |
. 2
|
| 54 | 48, 6 | negsubd 8389 |
. . . . . 6
|
| 55 | 54 | adantr 276 |
. . . . 5
|
| 56 | 55 | seqeq1d 10598 |
. . . 4
|
| 57 | eluzelcn 9659 |
. . . . . 6
| |
| 58 | 57 | adantl 277 |
. . . . 5
|
| 59 | 6 | adantr 276 |
. . . . 5
|
| 60 | 58, 59 | negsubd 8389 |
. . . 4
|
| 61 | 56, 60 | fveq12d 5583 |
. . 3
|
| 62 | simpr 110 |
. . . 4
| |
| 63 | 5 | adantr 276 |
. . . . 5
|
| 64 | 63 | znegcld 9497 |
. . . 4
|
| 65 | 3 | ad2antrr 488 |
. . . . . 6
|
| 66 | 59 | adantr 276 |
. . . . . 6
|
| 67 | elfzelz 10147 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 68 | zcnd 9496 |
. . . . . 6
|
| 70 | shftvalg 11147 |
. . . . . 6
| |
| 71 | 65, 66, 69, 70 | syl3anc 1250 |
. . . . 5
|
| 72 | 69, 66 | negsubd 8389 |
. . . . . 6
|
| 73 | 72 | fveq2d 5580 |
. . . . 5
|
| 74 | 71, 73 | eqtr4d 2241 |
. . . 4
|
| 75 | 36 | adantlr 477 |
. . . 4
|
| 76 | simpll 527 |
. . . . 5
| |
| 77 | simpr 110 |
. . . . . 6
| |
| 78 | 54 | fveq2d 5580 |
. . . . . . . 8
|
| 79 | 78 | eleq2d 2275 |
. . . . . . 7
|
| 80 | 79 | ad2antrr 488 |
. . . . . 6
|
| 81 | 77, 80 | mpbid 147 |
. . . . 5
|
| 82 | 76, 81, 15 | syl2anc 411 |
. . . 4
|
| 83 | 37 | adantlr 477 |
. . . 4
|
| 84 | 62, 64, 74, 75, 82, 83 | seq3shft2 10626 |
. . 3
|
| 85 | shftvalg 11147 |
. . . 4
| |
| 86 | 43, 59, 58, 85 | mp3an2i 1355 |
. . 3
|
| 87 | 61, 84, 86 | 3eqtr4d 2248 |
. 2
|
| 88 | 39, 53, 87 | eqfnfvd 5680 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-seqfrec 10593 df-shft 11126 |
| This theorem is referenced by: iser3shft 11657 eftlub 12001 |
| Copyright terms: Public domain | W3C validator |