Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srg1zr | Unicode version |
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
srg1zr.b | |
srg1zr.p | |
srg1zr.t |
Ref | Expression |
---|---|
srg1zr | SRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 395 | . 2 | |
2 | srgmnd 12943 | . . . . . . 7 SRing | |
3 | 2 | 3ad2ant1 1018 | . . . . . 6 SRing |
4 | 3 | adantr 276 | . . . . 5 SRing |
5 | mndmgm 12688 | . . . . 5 Mgm | |
6 | 4, 5 | syl 14 | . . . 4 SRing Mgm |
7 | simpr 110 | . . . 4 SRing | |
8 | simpl2 1001 | . . . 4 SRing | |
9 | srg1zr.b | . . . . 5 | |
10 | srg1zr.p | . . . . 5 | |
11 | 9, 10 | mgmb1mgm1 12652 | . . . 4 Mgm |
12 | 6, 7, 8, 11 | syl3anc 1238 | . . 3 SRing |
13 | eqid 2175 | . . . . . . . 8 mulGrp mulGrp | |
14 | 13, 9 | mgpbasg 12930 | . . . . . . 7 SRing mulGrp |
15 | 14 | 3ad2ant1 1018 | . . . . . 6 SRing mulGrp |
16 | 15 | adantr 276 | . . . . 5 SRing mulGrp |
17 | 16 | eqeq1d 2184 | . . . 4 SRing mulGrp |
18 | simpl1 1000 | . . . . . 6 SRing SRing | |
19 | 13 | srgmgp 12944 | . . . . . 6 SRing mulGrp |
20 | mndmgm 12688 | . . . . . 6 mulGrp mulGrp Mgm | |
21 | 18, 19, 20 | 3syl 17 | . . . . 5 SRing mulGrp Mgm |
22 | 7, 16 | eleqtrd 2254 | . . . . 5 SRing mulGrp |
23 | srg1zr.t | . . . . . . . . . . 11 | |
24 | 13, 23 | mgpplusgg 12929 | . . . . . . . . . 10 SRing mulGrp |
25 | 24 | fneq1d 5298 | . . . . . . . . 9 SRing mulGrp |
26 | 25 | biimpa 296 | . . . . . . . 8 SRing mulGrp |
27 | 26 | 3adant2 1016 | . . . . . . 7 SRing mulGrp |
28 | 27 | adantr 276 | . . . . . 6 SRing mulGrp |
29 | 16 | sqxpeqd 4646 | . . . . . . 7 SRing mulGrp mulGrp |
30 | 29 | fneq2d 5299 | . . . . . 6 SRing mulGrp mulGrp mulGrp mulGrp |
31 | 28, 30 | mpbid 147 | . . . . 5 SRing mulGrp mulGrp mulGrp |
32 | eqid 2175 | . . . . . 6 mulGrp mulGrp | |
33 | eqid 2175 | . . . . . 6 mulGrp mulGrp | |
34 | 32, 33 | mgmb1mgm1 12652 | . . . . 5 mulGrp Mgm mulGrp mulGrp mulGrp mulGrp mulGrp mulGrp |
35 | 21, 22, 31, 34 | syl3anc 1238 | . . . 4 SRing mulGrp mulGrp |
36 | 24 | eqcomd 2181 | . . . . . 6 SRing mulGrp |
37 | 18, 36 | syl 14 | . . . . 5 SRing mulGrp |
38 | 37 | eqeq1d 2184 | . . . 4 SRing mulGrp |
39 | 17, 35, 38 | 3bitrd 214 | . . 3 SRing |
40 | 12, 39 | anbi12d 473 | . 2 SRing |
41 | 1, 40 | bitrid 192 | 1 SRing |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 csn 3589 cop 3592 cxp 4618 wfn 5203 cfv 5208 cbs 12428 cplusg 12492 cmulr 12493 Mgmcmgm 12638 cmnd 12682 mulGrpcmgp 12925 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-plusf 12639 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-cmn 12886 df-mgp 12926 df-srg 12940 |
This theorem is referenced by: srgen1zr 12964 |
Copyright terms: Public domain | W3C validator |