ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srg1zr Unicode version

Theorem srg1zr 13358
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b  |-  B  =  ( Base `  R
)
srg1zr.p  |-  .+  =  ( +g  `  R )
srg1zr.t  |-  .*  =  ( .r `  R )
Assertion
Ref Expression
srg1zr  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 395 . 2  |-  ( B  =  { Z }  <->  ( B  =  { Z }  /\  B  =  { Z } ) )
2 srgmnd 13338 . . . . . . 7  |-  ( R  e. SRing  ->  R  e.  Mnd )
323ad2ant1 1020 . . . . . 6  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  R  e.  Mnd )
43adantr 276 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e.  Mnd )
5 mndmgm 12898 . . . . 5  |-  ( R  e.  Mnd  ->  R  e. Mgm )
64, 5syl 14 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e. Mgm )
7 simpr 110 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  Z  e.  B )
8 simpl2 1003 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  .+  Fn  ( B  X.  B
) )
9 srg1zr.b . . . . 5  |-  B  =  ( Base `  R
)
10 srg1zr.p . . . . 5  |-  .+  =  ( +g  `  R )
119, 10mgmb1mgm1 12847 . . . 4  |-  ( ( R  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
126, 7, 8, 11syl3anc 1249 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
13 eqid 2189 . . . . . . . 8  |-  (mulGrp `  R )  =  (mulGrp `  R )
1413, 9mgpbasg 13297 . . . . . . 7  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
15143ad2ant1 1020 . . . . . 6  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615adantr 276 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1716eqeq1d 2198 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  ( Base `  (mulGrp `  R ) )  =  { Z } ) )
18 simpl1 1002 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e. SRing )
1913srgmgp 13339 . . . . . 6  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
20 mndmgm 12898 . . . . . 6  |-  ( (mulGrp `  R )  e.  Mnd  ->  (mulGrp `  R )  e. Mgm )
2118, 19, 203syl 17 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (mulGrp `  R )  e. Mgm )
227, 16eleqtrd 2268 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  Z  e.  ( Base `  (mulGrp `  R ) ) )
23 srg1zr.t . . . . . . . . . . 11  |-  .*  =  ( .r `  R )
2413, 23mgpplusgg 13295 . . . . . . . . . 10  |-  ( R  e. SRing  ->  .*  =  ( +g  `  (mulGrp `  R
) ) )
2524fneq1d 5325 . . . . . . . . 9  |-  ( R  e. SRing  ->  (  .*  Fn  ( B  X.  B
)  <->  ( +g  `  (mulGrp `  R ) )  Fn  ( B  X.  B
) ) )
2625biimpa 296 . . . . . . . 8  |-  ( ( R  e. SRing  /\  .*  Fn  ( B  X.  B
) )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
27263adant2 1018 . . . . . . 7  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
2827adantr 276 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
2916sqxpeqd 4670 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  X.  B )  =  ( ( Base `  (mulGrp `  R ) )  X.  ( Base `  (mulGrp `  R ) ) ) )
3029fneq2d 5326 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( +g  `  (mulGrp `  R ) )  Fn  ( B  X.  B
)  <->  ( +g  `  (mulGrp `  R ) )  Fn  ( ( Base `  (mulGrp `  R ) )  X.  ( Base `  (mulGrp `  R ) ) ) ) )
3128, 30mpbid 147 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  Fn  (
( Base `  (mulGrp `  R
) )  X.  ( Base `  (mulGrp `  R
) ) ) )
32 eqid 2189 . . . . . 6  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
33 eqid 2189 . . . . . 6  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
3432, 33mgmb1mgm1 12847 . . . . 5  |-  ( ( (mulGrp `  R )  e. Mgm  /\  Z  e.  (
Base `  (mulGrp `  R
) )  /\  ( +g  `  (mulGrp `  R
) )  Fn  (
( Base `  (mulGrp `  R
) )  X.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( Base `  (mulGrp `  R )
)  =  { Z } 
<->  ( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3521, 22, 31, 34syl3anc 1249 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( Base `  (mulGrp `  R
) )  =  { Z }  <->  ( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3624eqcomd 2195 . . . . . 6  |-  ( R  e. SRing  ->  ( +g  `  (mulGrp `  R ) )  =  .*  )
3718, 36syl 14 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  =  .*  )
3837eqeq1d 2198 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. }  <->  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3917, 35, 383bitrd 214 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) )
4012, 39anbi12d 473 . 2  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( B  =  { Z }  /\  B  =  { Z } )  <-> 
(  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
411, 40bitrid 192 1  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {csn 3607   <.cop 3610    X. cxp 4642    Fn wfn 5230   ` cfv 5235   Basecbs 12515   +g cplusg 12592   .rcmulr 12593  Mgmcmgm 12833   Mndcmnd 12892  mulGrpcmgp 13291  SRingcsrg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-0g 12766  df-plusf 12834  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-cmn 13242  df-mgp 13292  df-srg 13335
This theorem is referenced by:  srgen1zr  13359
  Copyright terms: Public domain W3C validator