| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srg1zr | Unicode version | ||
| Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| srg1zr.b |
|
| srg1zr.p |
|
| srg1zr.t |
|
| Ref | Expression |
|---|---|
| srg1zr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 |
. 2
| |
| 2 | srgmnd 13844 |
. . . . . . 7
| |
| 3 | 2 | 3ad2ant1 1021 |
. . . . . 6
|
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | mndmgm 13369 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | simpr 110 |
. . . 4
| |
| 8 | simpl2 1004 |
. . . 4
| |
| 9 | srg1zr.b |
. . . . 5
| |
| 10 | srg1zr.p |
. . . . 5
| |
| 11 | 9, 10 | mgmb1mgm1 13315 |
. . . 4
|
| 12 | 6, 7, 8, 11 | syl3anc 1250 |
. . 3
|
| 13 | eqid 2207 |
. . . . . . . 8
| |
| 14 | 13, 9 | mgpbasg 13803 |
. . . . . . 7
|
| 15 | 14 | 3ad2ant1 1021 |
. . . . . 6
|
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | 16 | eqeq1d 2216 |
. . . 4
|
| 18 | simpl1 1003 |
. . . . . 6
| |
| 19 | 13 | srgmgp 13845 |
. . . . . 6
|
| 20 | mndmgm 13369 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3syl 17 |
. . . . 5
|
| 22 | 7, 16 | eleqtrd 2286 |
. . . . 5
|
| 23 | srg1zr.t |
. . . . . . . . . . 11
| |
| 24 | 13, 23 | mgpplusgg 13801 |
. . . . . . . . . 10
|
| 25 | 24 | fneq1d 5383 |
. . . . . . . . 9
|
| 26 | 25 | biimpa 296 |
. . . . . . . 8
|
| 27 | 26 | 3adant2 1019 |
. . . . . . 7
|
| 28 | 27 | adantr 276 |
. . . . . 6
|
| 29 | 16 | sqxpeqd 4719 |
. . . . . . 7
|
| 30 | 29 | fneq2d 5384 |
. . . . . 6
|
| 31 | 28, 30 | mpbid 147 |
. . . . 5
|
| 32 | eqid 2207 |
. . . . . 6
| |
| 33 | eqid 2207 |
. . . . . 6
| |
| 34 | 32, 33 | mgmb1mgm1 13315 |
. . . . 5
|
| 35 | 21, 22, 31, 34 | syl3anc 1250 |
. . . 4
|
| 36 | 24 | eqcomd 2213 |
. . . . . 6
|
| 37 | 18, 36 | syl 14 |
. . . . 5
|
| 38 | 37 | eqeq1d 2216 |
. . . 4
|
| 39 | 17, 35, 38 | 3bitrd 214 |
. . 3
|
| 40 | 12, 39 | anbi12d 473 |
. 2
|
| 41 | 1, 40 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-plusf 13302 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-cmn 13737 df-mgp 13798 df-srg 13841 |
| This theorem is referenced by: srgen1zr 13865 |
| Copyright terms: Public domain | W3C validator |