ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srg1zr Unicode version

Theorem srg1zr 13483
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b  |-  B  =  ( Base `  R
)
srg1zr.p  |-  .+  =  ( +g  `  R )
srg1zr.t  |-  .*  =  ( .r `  R )
Assertion
Ref Expression
srg1zr  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 395 . 2  |-  ( B  =  { Z }  <->  ( B  =  { Z }  /\  B  =  { Z } ) )
2 srgmnd 13463 . . . . . . 7  |-  ( R  e. SRing  ->  R  e.  Mnd )
323ad2ant1 1020 . . . . . 6  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  R  e.  Mnd )
43adantr 276 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e.  Mnd )
5 mndmgm 13003 . . . . 5  |-  ( R  e.  Mnd  ->  R  e. Mgm )
64, 5syl 14 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e. Mgm )
7 simpr 110 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  Z  e.  B )
8 simpl2 1003 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  .+  Fn  ( B  X.  B
) )
9 srg1zr.b . . . . 5  |-  B  =  ( Base `  R
)
10 srg1zr.p . . . . 5  |-  .+  =  ( +g  `  R )
119, 10mgmb1mgm1 12951 . . . 4  |-  ( ( R  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
126, 7, 8, 11syl3anc 1249 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
13 eqid 2193 . . . . . . . 8  |-  (mulGrp `  R )  =  (mulGrp `  R )
1413, 9mgpbasg 13422 . . . . . . 7  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
15143ad2ant1 1020 . . . . . 6  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615adantr 276 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1716eqeq1d 2202 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  ( Base `  (mulGrp `  R ) )  =  { Z } ) )
18 simpl1 1002 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  R  e. SRing )
1913srgmgp 13464 . . . . . 6  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
20 mndmgm 13003 . . . . . 6  |-  ( (mulGrp `  R )  e.  Mnd  ->  (mulGrp `  R )  e. Mgm )
2118, 19, 203syl 17 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (mulGrp `  R )  e. Mgm )
227, 16eleqtrd 2272 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  Z  e.  ( Base `  (mulGrp `  R ) ) )
23 srg1zr.t . . . . . . . . . . 11  |-  .*  =  ( .r `  R )
2413, 23mgpplusgg 13420 . . . . . . . . . 10  |-  ( R  e. SRing  ->  .*  =  ( +g  `  (mulGrp `  R
) ) )
2524fneq1d 5344 . . . . . . . . 9  |-  ( R  e. SRing  ->  (  .*  Fn  ( B  X.  B
)  <->  ( +g  `  (mulGrp `  R ) )  Fn  ( B  X.  B
) ) )
2625biimpa 296 . . . . . . . 8  |-  ( ( R  e. SRing  /\  .*  Fn  ( B  X.  B
) )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
27263adant2 1018 . . . . . . 7  |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
2827adantr 276 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  Fn  ( B  X.  B ) )
2916sqxpeqd 4685 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  X.  B )  =  ( ( Base `  (mulGrp `  R ) )  X.  ( Base `  (mulGrp `  R ) ) ) )
3029fneq2d 5345 . . . . . 6  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( +g  `  (mulGrp `  R ) )  Fn  ( B  X.  B
)  <->  ( +g  `  (mulGrp `  R ) )  Fn  ( ( Base `  (mulGrp `  R ) )  X.  ( Base `  (mulGrp `  R ) ) ) ) )
3128, 30mpbid 147 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  Fn  (
( Base `  (mulGrp `  R
) )  X.  ( Base `  (mulGrp `  R
) ) ) )
32 eqid 2193 . . . . . 6  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
33 eqid 2193 . . . . . 6  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
3432, 33mgmb1mgm1 12951 . . . . 5  |-  ( ( (mulGrp `  R )  e. Mgm  /\  Z  e.  (
Base `  (mulGrp `  R
) )  /\  ( +g  `  (mulGrp `  R
) )  Fn  (
( Base `  (mulGrp `  R
) )  X.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( Base `  (mulGrp `  R )
)  =  { Z } 
<->  ( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3521, 22, 31, 34syl3anc 1249 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( Base `  (mulGrp `  R
) )  =  { Z }  <->  ( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3624eqcomd 2199 . . . . . 6  |-  ( R  e. SRing  ->  ( +g  `  (mulGrp `  R ) )  =  .*  )
3718, 36syl 14 . . . . 5  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( +g  `  (mulGrp `  R
) )  =  .*  )
3837eqeq1d 2202 . . . 4  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( +g  `  (mulGrp `  R ) )  =  { <. <. Z ,  Z >. ,  Z >. }  <->  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) )
3917, 35, 383bitrd 214 . . 3  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) )
4012, 39anbi12d 473 . 2  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  (
( B  =  { Z }  /\  B  =  { Z } )  <-> 
(  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
411, 40bitrid 192 1  |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B
)  /\  .*  Fn  ( B  X.  B
) )  /\  Z  e.  B )  ->  ( B  =  { Z } 
<->  (  .+  =  { <. <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {csn 3618   <.cop 3621    X. cxp 4657    Fn wfn 5249   ` cfv 5254   Basecbs 12618   +g cplusg 12695   .rcmulr 12696  Mgmcmgm 12937   Mndcmnd 12997  mulGrpcmgp 13416  SRingcsrg 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-plusf 12938  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-cmn 13356  df-mgp 13417  df-srg 13460
This theorem is referenced by:  srgen1zr  13484
  Copyright terms: Public domain W3C validator