| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ptex | Unicode version | ||
| Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pt 12932 |
. . 3
| |
| 2 | dmeq 4866 |
. . . . . . . . 9
| |
| 3 | 2 | fneq2d 5349 |
. . . . . . . 8
|
| 4 | fveq1 5557 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2d 2266 |
. . . . . . . . 9
|
| 6 | 2, 5 | raleqbidv 2709 |
. . . . . . . 8
|
| 7 | 2 | difeq1d 3280 |
. . . . . . . . . 10
|
| 8 | 4 | unieqd 3850 |
. . . . . . . . . . 11
|
| 9 | 8 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 10 | 7, 9 | raleqbidv 2709 |
. . . . . . . . 9
|
| 11 | 10 | rexbidv 2498 |
. . . . . . . 8
|
| 12 | 3, 6, 11 | 3anbi123d 1323 |
. . . . . . 7
|
| 13 | 2 | ixpeq1d 6769 |
. . . . . . . 8
|
| 14 | 13 | eqeq2d 2208 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | exbidv 1839 |
. . . . 5
|
| 17 | 16 | abbidv 2314 |
. . . 4
|
| 18 | 17 | fveq2d 5562 |
. . 3
|
| 19 | elex 2774 |
. . 3
| |
| 20 | dmexg 4930 |
. . . . . . . . . 10
| |
| 21 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 22 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | fvex 5578 |
. . . . . . . . . . . 12
|
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 24 | ralrimivw 2571 |
. . . . . . . . . 10
|
| 26 | ixpexgg 6781 |
. . . . . . . . . 10
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
|
| 28 | 27 | ralrimivw 2571 |
. . . . . . . 8
|
| 29 | dfiun2g 3948 |
. . . . . . . 8
| |
| 30 | 28, 29 | syl 14 |
. . . . . . 7
|
| 31 | rnexg 4931 |
. . . . . . . . . 10
| |
| 32 | 31 | uniexd 4475 |
. . . . . . . . 9
|
| 33 | mapvalg 6717 |
. . . . . . . . . 10
| |
| 34 | mapex 6713 |
. . . . . . . . . . 11
| |
| 35 | 34 | ancoms 268 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeltrd 2273 |
. . . . . . . . 9
|
| 37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
|
| 38 | iunexg 6176 |
. . . . . . . 8
| |
| 39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | 30, 39 | eqeltrrd 2274 |
. . . . . 6
|
| 41 | uniexb 4508 |
. . . . . 6
| |
| 42 | 40, 41 | sylibr 134 |
. . . . 5
|
| 43 | simp1 999 |
. . . . . . . . . . 11
| |
| 44 | fvssunirng 5573 |
. . . . . . . . . . . . . . 15
| |
| 45 | 44 | elv 2767 |
. . . . . . . . . . . . . 14
|
| 46 | 45 | sseli 3179 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ralimi 2560 |
. . . . . . . . . . . 12
|
| 48 | 47 | 3ad2ant2 1021 |
. . . . . . . . . . 11
|
| 49 | ffnfv 5720 |
. . . . . . . . . . 11
| |
| 50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
|
| 51 | 32, 20 | elmapd 6721 |
. . . . . . . . . 10
|
| 52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
|
| 53 | 52 | anim1d 336 |
. . . . . . . 8
|
| 54 | 53 | eximdv 1894 |
. . . . . . 7
|
| 55 | df-rex 2481 |
. . . . . . 7
| |
| 56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
|
| 57 | 56 | ss2abdv 3256 |
. . . . 5
|
| 58 | 42, 57 | ssexd 4173 |
. . . 4
|
| 59 | tgvalex 12934 |
. . . 4
| |
| 60 | 58, 59 | syl 14 |
. . 3
|
| 61 | 1, 18, 19, 60 | fvmptd3 5655 |
. 2
|
| 62 | 61, 60 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-ixp 6758 df-topgen 12931 df-pt 12932 |
| This theorem is referenced by: prdsex 12940 psrval 14220 fnpsr 14221 psrbasg 14227 psrplusgg 14230 |
| Copyright terms: Public domain | W3C validator |