| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ptex | Unicode version | ||
| Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pt 13294 |
. . 3
| |
| 2 | dmeq 4923 |
. . . . . . . . 9
| |
| 3 | 2 | fneq2d 5412 |
. . . . . . . 8
|
| 4 | fveq1 5626 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2d 2299 |
. . . . . . . . 9
|
| 6 | 2, 5 | raleqbidv 2744 |
. . . . . . . 8
|
| 7 | 2 | difeq1d 3321 |
. . . . . . . . . 10
|
| 8 | 4 | unieqd 3899 |
. . . . . . . . . . 11
|
| 9 | 8 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 10 | 7, 9 | raleqbidv 2744 |
. . . . . . . . 9
|
| 11 | 10 | rexbidv 2531 |
. . . . . . . 8
|
| 12 | 3, 6, 11 | 3anbi123d 1346 |
. . . . . . 7
|
| 13 | 2 | ixpeq1d 6857 |
. . . . . . . 8
|
| 14 | 13 | eqeq2d 2241 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | exbidv 1871 |
. . . . 5
|
| 17 | 16 | abbidv 2347 |
. . . 4
|
| 18 | 17 | fveq2d 5631 |
. . 3
|
| 19 | elex 2811 |
. . 3
| |
| 20 | dmexg 4988 |
. . . . . . . . . 10
| |
| 21 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 22 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | fvex 5647 |
. . . . . . . . . . . 12
|
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 24 | ralrimivw 2604 |
. . . . . . . . . 10
|
| 26 | ixpexgg 6869 |
. . . . . . . . . 10
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
|
| 28 | 27 | ralrimivw 2604 |
. . . . . . . 8
|
| 29 | dfiun2g 3997 |
. . . . . . . 8
| |
| 30 | 28, 29 | syl 14 |
. . . . . . 7
|
| 31 | rnexg 4989 |
. . . . . . . . . 10
| |
| 32 | 31 | uniexd 4531 |
. . . . . . . . 9
|
| 33 | mapvalg 6805 |
. . . . . . . . . 10
| |
| 34 | mapex 6801 |
. . . . . . . . . . 11
| |
| 35 | 34 | ancoms 268 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeltrd 2306 |
. . . . . . . . 9
|
| 37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
|
| 38 | iunexg 6264 |
. . . . . . . 8
| |
| 39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | 30, 39 | eqeltrrd 2307 |
. . . . . 6
|
| 41 | uniexb 4564 |
. . . . . 6
| |
| 42 | 40, 41 | sylibr 134 |
. . . . 5
|
| 43 | simp1 1021 |
. . . . . . . . . . 11
| |
| 44 | fvssunirng 5642 |
. . . . . . . . . . . . . . 15
| |
| 45 | 44 | elv 2803 |
. . . . . . . . . . . . . 14
|
| 46 | 45 | sseli 3220 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ralimi 2593 |
. . . . . . . . . . . 12
|
| 48 | 47 | 3ad2ant2 1043 |
. . . . . . . . . . 11
|
| 49 | ffnfv 5793 |
. . . . . . . . . . 11
| |
| 50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
|
| 51 | 32, 20 | elmapd 6809 |
. . . . . . . . . 10
|
| 52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
|
| 53 | 52 | anim1d 336 |
. . . . . . . 8
|
| 54 | 53 | eximdv 1926 |
. . . . . . 7
|
| 55 | df-rex 2514 |
. . . . . . 7
| |
| 56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
|
| 57 | 56 | ss2abdv 3297 |
. . . . 5
|
| 58 | 42, 57 | ssexd 4224 |
. . . 4
|
| 59 | tgvalex 13296 |
. . . 4
| |
| 60 | 58, 59 | syl 14 |
. . 3
|
| 61 | 1, 18, 19, 60 | fvmptd3 5728 |
. 2
|
| 62 | 61, 60 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 df-ixp 6846 df-topgen 13293 df-pt 13294 |
| This theorem is referenced by: prdsex 13302 prdsval 13306 prdsbaslemss 13307 psrval 14630 fnpsr 14631 psrbasg 14638 psrplusgg 14642 |
| Copyright terms: Public domain | W3C validator |