| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ptex | Unicode version | ||
| Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pt 13126 |
. . 3
| |
| 2 | dmeq 4879 |
. . . . . . . . 9
| |
| 3 | 2 | fneq2d 5366 |
. . . . . . . 8
|
| 4 | fveq1 5577 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2d 2275 |
. . . . . . . . 9
|
| 6 | 2, 5 | raleqbidv 2718 |
. . . . . . . 8
|
| 7 | 2 | difeq1d 3290 |
. . . . . . . . . 10
|
| 8 | 4 | unieqd 3861 |
. . . . . . . . . . 11
|
| 9 | 8 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 10 | 7, 9 | raleqbidv 2718 |
. . . . . . . . 9
|
| 11 | 10 | rexbidv 2507 |
. . . . . . . 8
|
| 12 | 3, 6, 11 | 3anbi123d 1325 |
. . . . . . 7
|
| 13 | 2 | ixpeq1d 6799 |
. . . . . . . 8
|
| 14 | 13 | eqeq2d 2217 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | exbidv 1848 |
. . . . 5
|
| 17 | 16 | abbidv 2323 |
. . . 4
|
| 18 | 17 | fveq2d 5582 |
. . 3
|
| 19 | elex 2783 |
. . 3
| |
| 20 | dmexg 4943 |
. . . . . . . . . 10
| |
| 21 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 22 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | fvex 5598 |
. . . . . . . . . . . 12
|
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 24 | ralrimivw 2580 |
. . . . . . . . . 10
|
| 26 | ixpexgg 6811 |
. . . . . . . . . 10
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
|
| 28 | 27 | ralrimivw 2580 |
. . . . . . . 8
|
| 29 | dfiun2g 3959 |
. . . . . . . 8
| |
| 30 | 28, 29 | syl 14 |
. . . . . . 7
|
| 31 | rnexg 4944 |
. . . . . . . . . 10
| |
| 32 | 31 | uniexd 4488 |
. . . . . . . . 9
|
| 33 | mapvalg 6747 |
. . . . . . . . . 10
| |
| 34 | mapex 6743 |
. . . . . . . . . . 11
| |
| 35 | 34 | ancoms 268 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeltrd 2282 |
. . . . . . . . 9
|
| 37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
|
| 38 | iunexg 6206 |
. . . . . . . 8
| |
| 39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | 30, 39 | eqeltrrd 2283 |
. . . . . 6
|
| 41 | uniexb 4521 |
. . . . . 6
| |
| 42 | 40, 41 | sylibr 134 |
. . . . 5
|
| 43 | simp1 1000 |
. . . . . . . . . . 11
| |
| 44 | fvssunirng 5593 |
. . . . . . . . . . . . . . 15
| |
| 45 | 44 | elv 2776 |
. . . . . . . . . . . . . 14
|
| 46 | 45 | sseli 3189 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ralimi 2569 |
. . . . . . . . . . . 12
|
| 48 | 47 | 3ad2ant2 1022 |
. . . . . . . . . . 11
|
| 49 | ffnfv 5740 |
. . . . . . . . . . 11
| |
| 50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
|
| 51 | 32, 20 | elmapd 6751 |
. . . . . . . . . 10
|
| 52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
|
| 53 | 52 | anim1d 336 |
. . . . . . . 8
|
| 54 | 53 | eximdv 1903 |
. . . . . . 7
|
| 55 | df-rex 2490 |
. . . . . . 7
| |
| 56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
|
| 57 | 56 | ss2abdv 3266 |
. . . . 5
|
| 58 | 42, 57 | ssexd 4185 |
. . . 4
|
| 59 | tgvalex 13128 |
. . . 4
| |
| 60 | 58, 59 | syl 14 |
. . 3
|
| 61 | 1, 18, 19, 60 | fvmptd3 5675 |
. 2
|
| 62 | 61, 60 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-map 6739 df-ixp 6788 df-topgen 13125 df-pt 13126 |
| This theorem is referenced by: prdsex 13134 prdsval 13138 prdsbaslemss 13139 psrval 14461 fnpsr 14462 psrbasg 14469 psrplusgg 14473 |
| Copyright terms: Public domain | W3C validator |