| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ptex | Unicode version | ||
| Description: Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ptex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pt 13208 |
. . 3
| |
| 2 | dmeq 4897 |
. . . . . . . . 9
| |
| 3 | 2 | fneq2d 5384 |
. . . . . . . 8
|
| 4 | fveq1 5598 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2d 2277 |
. . . . . . . . 9
|
| 6 | 2, 5 | raleqbidv 2721 |
. . . . . . . 8
|
| 7 | 2 | difeq1d 3298 |
. . . . . . . . . 10
|
| 8 | 4 | unieqd 3875 |
. . . . . . . . . . 11
|
| 9 | 8 | eqeq2d 2219 |
. . . . . . . . . 10
|
| 10 | 7, 9 | raleqbidv 2721 |
. . . . . . . . 9
|
| 11 | 10 | rexbidv 2509 |
. . . . . . . 8
|
| 12 | 3, 6, 11 | 3anbi123d 1325 |
. . . . . . 7
|
| 13 | 2 | ixpeq1d 6820 |
. . . . . . . 8
|
| 14 | 13 | eqeq2d 2219 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | exbidv 1849 |
. . . . 5
|
| 17 | 16 | abbidv 2325 |
. . . 4
|
| 18 | 17 | fveq2d 5603 |
. . 3
|
| 19 | elex 2788 |
. . 3
| |
| 20 | dmexg 4961 |
. . . . . . . . . 10
| |
| 21 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 22 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | fvex 5619 |
. . . . . . . . . . . 12
|
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 24 | ralrimivw 2582 |
. . . . . . . . . 10
|
| 26 | ixpexgg 6832 |
. . . . . . . . . 10
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . . . . . 9
|
| 28 | 27 | ralrimivw 2582 |
. . . . . . . 8
|
| 29 | dfiun2g 3973 |
. . . . . . . 8
| |
| 30 | 28, 29 | syl 14 |
. . . . . . 7
|
| 31 | rnexg 4962 |
. . . . . . . . . 10
| |
| 32 | 31 | uniexd 4505 |
. . . . . . . . 9
|
| 33 | mapvalg 6768 |
. . . . . . . . . 10
| |
| 34 | mapex 6764 |
. . . . . . . . . . 11
| |
| 35 | 34 | ancoms 268 |
. . . . . . . . . 10
|
| 36 | 33, 35 | eqeltrd 2284 |
. . . . . . . . 9
|
| 37 | 32, 20, 36 | syl2anc 411 |
. . . . . . . 8
|
| 38 | iunexg 6227 |
. . . . . . . 8
| |
| 39 | 37, 28, 38 | syl2anc 411 |
. . . . . . 7
|
| 40 | 30, 39 | eqeltrrd 2285 |
. . . . . 6
|
| 41 | uniexb 4538 |
. . . . . 6
| |
| 42 | 40, 41 | sylibr 134 |
. . . . 5
|
| 43 | simp1 1000 |
. . . . . . . . . . 11
| |
| 44 | fvssunirng 5614 |
. . . . . . . . . . . . . . 15
| |
| 45 | 44 | elv 2780 |
. . . . . . . . . . . . . 14
|
| 46 | 45 | sseli 3197 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ralimi 2571 |
. . . . . . . . . . . 12
|
| 48 | 47 | 3ad2ant2 1022 |
. . . . . . . . . . 11
|
| 49 | ffnfv 5761 |
. . . . . . . . . . 11
| |
| 50 | 43, 48, 49 | sylanbrc 417 |
. . . . . . . . . 10
|
| 51 | 32, 20 | elmapd 6772 |
. . . . . . . . . 10
|
| 52 | 50, 51 | imbitrrid 156 |
. . . . . . . . 9
|
| 53 | 52 | anim1d 336 |
. . . . . . . 8
|
| 54 | 53 | eximdv 1904 |
. . . . . . 7
|
| 55 | df-rex 2492 |
. . . . . . 7
| |
| 56 | 54, 55 | imbitrrdi 162 |
. . . . . 6
|
| 57 | 56 | ss2abdv 3274 |
. . . . 5
|
| 58 | 42, 57 | ssexd 4200 |
. . . 4
|
| 59 | tgvalex 13210 |
. . . 4
| |
| 60 | 58, 59 | syl 14 |
. . 3
|
| 61 | 1, 18, 19, 60 | fvmptd3 5696 |
. 2
|
| 62 | 61, 60 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-ixp 6809 df-topgen 13207 df-pt 13208 |
| This theorem is referenced by: prdsex 13216 prdsval 13220 prdsbaslemss 13221 psrval 14543 fnpsr 14544 psrbasg 14551 psrplusgg 14555 |
| Copyright terms: Public domain | W3C validator |