| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acfun | Unicode version | ||
| Description: A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| acfun.ac |
|
| acfun.a |
|
| acfun.m |
|
| Ref | Expression |
|---|---|
| acfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acfun.a |
. . . . 5
| |
| 2 | 1 | elexd 2776 |
. . . 4
|
| 3 | abid2 2317 |
. . . . . 6
| |
| 4 | vex 2766 |
. . . . . 6
| |
| 5 | 3, 4 | eqeltri 2269 |
. . . . 5
|
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | 2, 6 | opabex3d 6187 |
. . 3
|
| 8 | acfun.ac |
. . . 4
| |
| 9 | df-ac 7289 |
. . . 4
| |
| 10 | 8, 9 | sylib 122 |
. . 3
|
| 11 | sseq2 3208 |
. . . . . 6
| |
| 12 | dmeq 4867 |
. . . . . . 7
| |
| 13 | 12 | fneq2d 5350 |
. . . . . 6
|
| 14 | 11, 13 | anbi12d 473 |
. . . . 5
|
| 15 | 14 | exbidv 1839 |
. . . 4
|
| 16 | 15 | spcgv 2851 |
. . 3
|
| 17 | 7, 10, 16 | sylc 62 |
. 2
|
| 18 | simprr 531 |
. . . . . 6
| |
| 19 | acfun.m |
. . . . . . . . . 10
| |
| 20 | elequ2 2172 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | exbidv 1839 |
. . . . . . . . . . . 12
|
| 22 | 21 | cbvralv 2729 |
. . . . . . . . . . 11
|
| 23 | elequ1 2171 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | cbvexv 1933 |
. . . . . . . . . . . 12
|
| 25 | 24 | ralbii 2503 |
. . . . . . . . . . 11
|
| 26 | 22, 25 | bitri 184 |
. . . . . . . . . 10
|
| 27 | 19, 26 | sylib 122 |
. . . . . . . . 9
|
| 28 | dmopab3 4880 |
. . . . . . . . 9
| |
| 29 | 27, 28 | sylib 122 |
. . . . . . . 8
|
| 30 | 29 | fneq2d 5350 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 18, 31 | mpbid 147 |
. . . . 5
|
| 33 | simplrl 535 |
. . . . . . . . 9
| |
| 34 | fnopfv 5695 |
. . . . . . . . . 10
| |
| 35 | 32, 34 | sylan 283 |
. . . . . . . . 9
|
| 36 | 33, 35 | sseldd 3185 |
. . . . . . . 8
|
| 37 | vex 2766 |
. . . . . . . . 9
| |
| 38 | vex 2766 |
. . . . . . . . . 10
| |
| 39 | 38, 37 | fvex 5581 |
. . . . . . . . 9
|
| 40 | eleq1 2259 |
. . . . . . . . . 10
| |
| 41 | elequ2 2172 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | anbi12d 473 |
. . . . . . . . 9
|
| 43 | eleq1 2259 |
. . . . . . . . . 10
| |
| 44 | 43 | anbi2d 464 |
. . . . . . . . 9
|
| 45 | 37, 39, 42, 44 | opelopab 4307 |
. . . . . . . 8
|
| 46 | 36, 45 | sylib 122 |
. . . . . . 7
|
| 47 | 46 | simprd 114 |
. . . . . 6
|
| 48 | 47 | ralrimiva 2570 |
. . . . 5
|
| 49 | 32, 48 | jca 306 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | eximdv 1894 |
. 2
|
| 52 | 17, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ac 7289 |
| This theorem is referenced by: exmidaclem 7291 |
| Copyright terms: Public domain | W3C validator |