| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > acfun | Unicode version | ||
| Description: A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| acfun.ac | 
 | 
| acfun.a | 
 | 
| acfun.m | 
 | 
| Ref | Expression | 
|---|---|
| acfun | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | acfun.a | 
. . . . 5
 | |
| 2 | 1 | elexd 2776 | 
. . . 4
 | 
| 3 | abid2 2317 | 
. . . . . 6
 | |
| 4 | vex 2766 | 
. . . . . 6
 | |
| 5 | 3, 4 | eqeltri 2269 | 
. . . . 5
 | 
| 6 | 5 | a1i 9 | 
. . . 4
 | 
| 7 | 2, 6 | opabex3d 6178 | 
. . 3
 | 
| 8 | acfun.ac | 
. . . 4
 | |
| 9 | df-ac 7273 | 
. . . 4
 | |
| 10 | 8, 9 | sylib 122 | 
. . 3
 | 
| 11 | sseq2 3207 | 
. . . . . 6
 | |
| 12 | dmeq 4866 | 
. . . . . . 7
 | |
| 13 | 12 | fneq2d 5349 | 
. . . . . 6
 | 
| 14 | 11, 13 | anbi12d 473 | 
. . . . 5
 | 
| 15 | 14 | exbidv 1839 | 
. . . 4
 | 
| 16 | 15 | spcgv 2851 | 
. . 3
 | 
| 17 | 7, 10, 16 | sylc 62 | 
. 2
 | 
| 18 | simprr 531 | 
. . . . . 6
 | |
| 19 | acfun.m | 
. . . . . . . . . 10
 | |
| 20 | elequ2 2172 | 
. . . . . . . . . . . . 13
 | |
| 21 | 20 | exbidv 1839 | 
. . . . . . . . . . . 12
 | 
| 22 | 21 | cbvralv 2729 | 
. . . . . . . . . . 11
 | 
| 23 | elequ1 2171 | 
. . . . . . . . . . . . 13
 | |
| 24 | 23 | cbvexv 1933 | 
. . . . . . . . . . . 12
 | 
| 25 | 24 | ralbii 2503 | 
. . . . . . . . . . 11
 | 
| 26 | 22, 25 | bitri 184 | 
. . . . . . . . . 10
 | 
| 27 | 19, 26 | sylib 122 | 
. . . . . . . . 9
 | 
| 28 | dmopab3 4879 | 
. . . . . . . . 9
 | |
| 29 | 27, 28 | sylib 122 | 
. . . . . . . 8
 | 
| 30 | 29 | fneq2d 5349 | 
. . . . . . 7
 | 
| 31 | 30 | adantr 276 | 
. . . . . 6
 | 
| 32 | 18, 31 | mpbid 147 | 
. . . . 5
 | 
| 33 | simplrl 535 | 
. . . . . . . . 9
 | |
| 34 | fnopfv 5692 | 
. . . . . . . . . 10
 | |
| 35 | 32, 34 | sylan 283 | 
. . . . . . . . 9
 | 
| 36 | 33, 35 | sseldd 3184 | 
. . . . . . . 8
 | 
| 37 | vex 2766 | 
. . . . . . . . 9
 | |
| 38 | vex 2766 | 
. . . . . . . . . 10
 | |
| 39 | 38, 37 | fvex 5578 | 
. . . . . . . . 9
 | 
| 40 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 41 | elequ2 2172 | 
. . . . . . . . . 10
 | |
| 42 | 40, 41 | anbi12d 473 | 
. . . . . . . . 9
 | 
| 43 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 44 | 43 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 45 | 37, 39, 42, 44 | opelopab 4306 | 
. . . . . . . 8
 | 
| 46 | 36, 45 | sylib 122 | 
. . . . . . 7
 | 
| 47 | 46 | simprd 114 | 
. . . . . 6
 | 
| 48 | 47 | ralrimiva 2570 | 
. . . . 5
 | 
| 49 | 32, 48 | jca 306 | 
. . . 4
 | 
| 50 | 49 | ex 115 | 
. . 3
 | 
| 51 | 50 | eximdv 1894 | 
. 2
 | 
| 52 | 17, 51 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ac 7273 | 
| This theorem is referenced by: exmidaclem 7275 | 
| Copyright terms: Public domain | W3C validator |