Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acfun | Unicode version |
Description: A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
Ref | Expression |
---|---|
acfun.ac | CHOICE |
acfun.a | |
acfun.m |
Ref | Expression |
---|---|
acfun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acfun.a | . . . . 5 | |
2 | 1 | elexd 2739 | . . . 4 |
3 | abid2 2287 | . . . . . 6 | |
4 | vex 2729 | . . . . . 6 | |
5 | 3, 4 | eqeltri 2239 | . . . . 5 |
6 | 5 | a1i 9 | . . . 4 |
7 | 2, 6 | opabex3d 6089 | . . 3 |
8 | acfun.ac | . . . 4 CHOICE | |
9 | df-ac 7162 | . . . 4 CHOICE | |
10 | 8, 9 | sylib 121 | . . 3 |
11 | sseq2 3166 | . . . . . 6 | |
12 | dmeq 4804 | . . . . . . 7 | |
13 | 12 | fneq2d 5279 | . . . . . 6 |
14 | 11, 13 | anbi12d 465 | . . . . 5 |
15 | 14 | exbidv 1813 | . . . 4 |
16 | 15 | spcgv 2813 | . . 3 |
17 | 7, 10, 16 | sylc 62 | . 2 |
18 | simprr 522 | . . . . . 6 | |
19 | acfun.m | . . . . . . . . . 10 | |
20 | elequ2 2141 | . . . . . . . . . . . . 13 | |
21 | 20 | exbidv 1813 | . . . . . . . . . . . 12 |
22 | 21 | cbvralv 2692 | . . . . . . . . . . 11 |
23 | elequ1 2140 | . . . . . . . . . . . . 13 | |
24 | 23 | cbvexv 1906 | . . . . . . . . . . . 12 |
25 | 24 | ralbii 2472 | . . . . . . . . . . 11 |
26 | 22, 25 | bitri 183 | . . . . . . . . . 10 |
27 | 19, 26 | sylib 121 | . . . . . . . . 9 |
28 | dmopab3 4817 | . . . . . . . . 9 | |
29 | 27, 28 | sylib 121 | . . . . . . . 8 |
30 | 29 | fneq2d 5279 | . . . . . . 7 |
31 | 30 | adantr 274 | . . . . . 6 |
32 | 18, 31 | mpbid 146 | . . . . 5 |
33 | simplrl 525 | . . . . . . . . 9 | |
34 | fnopfv 5615 | . . . . . . . . . 10 | |
35 | 32, 34 | sylan 281 | . . . . . . . . 9 |
36 | 33, 35 | sseldd 3143 | . . . . . . . 8 |
37 | vex 2729 | . . . . . . . . 9 | |
38 | vex 2729 | . . . . . . . . . 10 | |
39 | 38, 37 | fvex 5506 | . . . . . . . . 9 |
40 | eleq1 2229 | . . . . . . . . . 10 | |
41 | elequ2 2141 | . . . . . . . . . 10 | |
42 | 40, 41 | anbi12d 465 | . . . . . . . . 9 |
43 | eleq1 2229 | . . . . . . . . . 10 | |
44 | 43 | anbi2d 460 | . . . . . . . . 9 |
45 | 37, 39, 42, 44 | opelopab 4249 | . . . . . . . 8 |
46 | 36, 45 | sylib 121 | . . . . . . 7 |
47 | 46 | simprd 113 | . . . . . 6 |
48 | 47 | ralrimiva 2539 | . . . . 5 |
49 | 32, 48 | jca 304 | . . . 4 |
50 | 49 | ex 114 | . . 3 |
51 | 50 | eximdv 1868 | . 2 |
52 | 17, 51 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 cvv 2726 wss 3116 cop 3579 copab 4042 cdm 4604 wfn 5183 cfv 5188 CHOICEwac 7161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ac 7162 |
This theorem is referenced by: exmidaclem 7164 |
Copyright terms: Public domain | W3C validator |