| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acfun | Unicode version | ||
| Description: A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| acfun.ac |
|
| acfun.a |
|
| acfun.m |
|
| Ref | Expression |
|---|---|
| acfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acfun.a |
. . . . 5
| |
| 2 | 1 | elexd 2813 |
. . . 4
|
| 3 | abid2 2350 |
. . . . . 6
| |
| 4 | vex 2802 |
. . . . . 6
| |
| 5 | 3, 4 | eqeltri 2302 |
. . . . 5
|
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | 2, 6 | opabex3d 6266 |
. . 3
|
| 8 | acfun.ac |
. . . 4
| |
| 9 | df-ac 7388 |
. . . 4
| |
| 10 | 8, 9 | sylib 122 |
. . 3
|
| 11 | sseq2 3248 |
. . . . . 6
| |
| 12 | dmeq 4923 |
. . . . . . 7
| |
| 13 | 12 | fneq2d 5412 |
. . . . . 6
|
| 14 | 11, 13 | anbi12d 473 |
. . . . 5
|
| 15 | 14 | exbidv 1871 |
. . . 4
|
| 16 | 15 | spcgv 2890 |
. . 3
|
| 17 | 7, 10, 16 | sylc 62 |
. 2
|
| 18 | simprr 531 |
. . . . . 6
| |
| 19 | acfun.m |
. . . . . . . . . 10
| |
| 20 | elequ2 2205 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | exbidv 1871 |
. . . . . . . . . . . 12
|
| 22 | 21 | cbvralv 2765 |
. . . . . . . . . . 11
|
| 23 | elequ1 2204 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | cbvexv 1965 |
. . . . . . . . . . . 12
|
| 25 | 24 | ralbii 2536 |
. . . . . . . . . . 11
|
| 26 | 22, 25 | bitri 184 |
. . . . . . . . . 10
|
| 27 | 19, 26 | sylib 122 |
. . . . . . . . 9
|
| 28 | dmopab3 4936 |
. . . . . . . . 9
| |
| 29 | 27, 28 | sylib 122 |
. . . . . . . 8
|
| 30 | 29 | fneq2d 5412 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 18, 31 | mpbid 147 |
. . . . 5
|
| 33 | simplrl 535 |
. . . . . . . . 9
| |
| 34 | fnopfv 5765 |
. . . . . . . . . 10
| |
| 35 | 32, 34 | sylan 283 |
. . . . . . . . 9
|
| 36 | 33, 35 | sseldd 3225 |
. . . . . . . 8
|
| 37 | vex 2802 |
. . . . . . . . 9
| |
| 38 | vex 2802 |
. . . . . . . . . 10
| |
| 39 | 38, 37 | fvex 5647 |
. . . . . . . . 9
|
| 40 | eleq1 2292 |
. . . . . . . . . 10
| |
| 41 | elequ2 2205 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | anbi12d 473 |
. . . . . . . . 9
|
| 43 | eleq1 2292 |
. . . . . . . . . 10
| |
| 44 | 43 | anbi2d 464 |
. . . . . . . . 9
|
| 45 | 37, 39, 42, 44 | opelopab 4360 |
. . . . . . . 8
|
| 46 | 36, 45 | sylib 122 |
. . . . . . 7
|
| 47 | 46 | simprd 114 |
. . . . . 6
|
| 48 | 47 | ralrimiva 2603 |
. . . . 5
|
| 49 | 32, 48 | jca 306 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | eximdv 1926 |
. 2
|
| 52 | 17, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ac 7388 |
| This theorem is referenced by: exmidaclem 7390 |
| Copyright terms: Public domain | W3C validator |