ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acfun Unicode version

Theorem acfun 7389
Description: A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
Hypotheses
Ref Expression
acfun.ac  |-  ( ph  -> CHOICE )
acfun.a  |-  ( ph  ->  A  e.  V )
acfun.m  |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )
Assertion
Ref Expression
acfun  |-  ( ph  ->  E. f ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  e.  x ) )
Distinct variable groups:    A, f, x    ph, f, x    x, w
Allowed substitution hints:    ph( w)    A( w)    V( x, w, f)

Proof of Theorem acfun
Dummy variables  u  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acfun.a . . . . 5  |-  ( ph  ->  A  e.  V )
21elexd 2813 . . . 4  |-  ( ph  ->  A  e.  _V )
3 abid2 2350 . . . . . 6  |-  { v  |  v  e.  u }  =  u
4 vex 2802 . . . . . 6  |-  u  e. 
_V
53, 4eqeltri 2302 . . . . 5  |-  { v  |  v  e.  u }  e.  _V
65a1i 9 . . . 4  |-  ( (
ph  /\  u  e.  A )  ->  { v  |  v  e.  u }  e.  _V )
72, 6opabex3d 6266 . . 3  |-  ( ph  ->  { <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  e.  _V )
8 acfun.ac . . . 4  |-  ( ph  -> CHOICE )
9 df-ac 7388 . . . 4  |-  (CHOICE  <->  A. y E. f ( f  C_  y  /\  f  Fn  dom  y ) )
108, 9sylib 122 . . 3  |-  ( ph  ->  A. y E. f
( f  C_  y  /\  f  Fn  dom  y ) )
11 sseq2 3248 . . . . . 6  |-  ( y  =  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  ->  ( f  C_  y 
<->  f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )
12 dmeq 4923 . . . . . . 7  |-  ( y  =  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  ->  dom  y  =  dom  { <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) } )
1312fneq2d 5412 . . . . . 6  |-  ( y  =  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  ->  ( f  Fn 
dom  y  <->  f  Fn  dom  { <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) } ) )
1411, 13anbi12d 473 . . . . 5  |-  ( y  =  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  ->  ( ( f 
C_  y  /\  f  Fn  dom  y )  <->  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) ) )
1514exbidv 1871 . . . 4  |-  ( y  =  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  ->  ( E. f
( f  C_  y  /\  f  Fn  dom  y )  <->  E. f
( f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) ) )
1615spcgv 2890 . . 3  |-  ( {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  e.  _V  ->  ( A. y E. f ( f  C_  y  /\  f  Fn  dom  y )  ->  E. f
( f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) ) )
177, 10, 16sylc 62 . 2  |-  ( ph  ->  E. f ( f 
C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )
18 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  -> 
f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } )
19 acfun.m . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  E. w  w  e.  x )
20 elequ2 2205 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
w  e.  x  <->  w  e.  u ) )
2120exbidv 1871 . . . . . . . . . . . 12  |-  ( x  =  u  ->  ( E. w  w  e.  x 
<->  E. w  w  e.  u ) )
2221cbvralv 2765 . . . . . . . . . . 11  |-  ( A. x  e.  A  E. w  w  e.  x  <->  A. u  e.  A  E. w  w  e.  u
)
23 elequ1 2204 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  (
w  e.  u  <->  v  e.  u ) )
2423cbvexv 1965 . . . . . . . . . . . 12  |-  ( E. w  w  e.  u  <->  E. v  v  e.  u
)
2524ralbii 2536 . . . . . . . . . . 11  |-  ( A. u  e.  A  E. w  w  e.  u  <->  A. u  e.  A  E. v  v  e.  u
)
2622, 25bitri 184 . . . . . . . . . 10  |-  ( A. x  e.  A  E. w  w  e.  x  <->  A. u  e.  A  E. v  v  e.  u
)
2719, 26sylib 122 . . . . . . . . 9  |-  ( ph  ->  A. u  e.  A  E. v  v  e.  u )
28 dmopab3 4936 . . . . . . . . 9  |-  ( A. u  e.  A  E. v  v  e.  u  <->  dom 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  =  A )
2927, 28sylib 122 . . . . . . . 8  |-  ( ph  ->  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  =  A )
3029fneq2d 5412 . . . . . . 7  |-  ( ph  ->  ( f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  <->  f  Fn  A ) )
3130adantr 276 . . . . . 6  |-  ( (
ph  /\  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  -> 
( f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  <->  f  Fn  A ) )
3218, 31mpbid 147 . . . . 5  |-  ( (
ph  /\  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  -> 
f  Fn  A )
33 simplrl 535 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  /\  x  e.  A )  ->  f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) } )
34 fnopfv 5765 . . . . . . . . . 10  |-  ( ( f  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( f `
 x ) >.  e.  f )
3532, 34sylan 283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  /\  x  e.  A )  ->  <. x ,  ( f `  x ) >.  e.  f )
3633, 35sseldd 3225 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  /\  x  e.  A )  ->  <. x ,  ( f `  x ) >.  e.  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } )
37 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
38 vex 2802 . . . . . . . . . 10  |-  f  e. 
_V
3938, 37fvex 5647 . . . . . . . . 9  |-  ( f `
 x )  e. 
_V
40 eleq1 2292 . . . . . . . . . 10  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
41 elequ2 2205 . . . . . . . . . 10  |-  ( u  =  x  ->  (
v  e.  u  <->  v  e.  x ) )
4240, 41anbi12d 473 . . . . . . . . 9  |-  ( u  =  x  ->  (
( u  e.  A  /\  v  e.  u
)  <->  ( x  e.  A  /\  v  e.  x ) ) )
43 eleq1 2292 . . . . . . . . . 10  |-  ( v  =  ( f `  x )  ->  (
v  e.  x  <->  ( f `  x )  e.  x
) )
4443anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( f `  x )  ->  (
( x  e.  A  /\  v  e.  x
)  <->  ( x  e.  A  /\  ( f `
 x )  e.  x ) ) )
4537, 39, 42, 44opelopab 4360 . . . . . . . 8  |-  ( <.
x ,  ( f `
 x ) >.  e.  { <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  <->  ( x  e.  A  /\  (
f `  x )  e.  x ) )
4636, 45sylib 122 . . . . . . 7  |-  ( ( ( ph  /\  (
f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  /\  x  e.  A )  ->  (
x  e.  A  /\  ( f `  x
)  e.  x ) )
4746simprd 114 . . . . . 6  |-  ( ( ( ph  /\  (
f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  /\  x  e.  A )  ->  (
f `  x )  e.  x )
4847ralrimiva 2603 . . . . 5  |-  ( (
ph  /\  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  ->  A. x  e.  A  ( f `  x
)  e.  x )
4932, 48jca 306 . . . 4  |-  ( (
ph  /\  ( f  C_ 
{ <. u ,  v
>.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } ) )  -> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
5049ex 115 . . 3  |-  ( ph  ->  ( ( f  C_  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } )  ->  (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  x ) ) )
5150eximdv 1926 . 2  |-  ( ph  ->  ( E. f ( f  C_  { <. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) }  /\  f  Fn  dom  {
<. u ,  v >.  |  ( u  e.  A  /\  v  e.  u ) } )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  e.  x ) ) )
5217, 51mpd 13 1  |-  ( ph  ->  E. f ( f  Fn  A  /\  A. x  e.  A  (
f `  x )  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   A.wral 2508   _Vcvv 2799    C_ wss 3197   <.cop 3669   {copab 4144   dom cdm 4719    Fn wfn 5313   ` cfv 5318  CHOICEwac 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ac 7388
This theorem is referenced by:  exmidaclem  7390
  Copyright terms: Public domain W3C validator