| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 |
|
| Ref | Expression |
|---|---|
| fneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 |
. 2
| |
| 2 | fneq1 5361 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-fun 5272 df-fn 5273 |
| This theorem is referenced by: fneq12d 5365 f1o00 5556 f1ompt 5730 fmpt2d 5741 f1ocnvd 6147 offval2 6173 ofrfval2 6174 caofinvl 6183 f1od2 6320 cc3 7379 ccatvalfn 11055 plusffng 13168 grpinvfng 13347 grpinvf1o 13373 mulgfng 13431 srg1zr 13720 scaffng 14042 neif 14584 fnmptd 15702 |
| Copyright terms: Public domain | W3C validator |