ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1d Unicode version

Theorem fneq1d 5308
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
fneq1d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )

Proof of Theorem fneq1d
StepHypRef Expression
1 fneq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 fneq1 5306 . 2  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221
This theorem is referenced by:  fneq12d  5310  f1o00  5498  f1ompt  5669  fmpt2d  5680  f1ocnvd  6075  offval2  6100  ofrfval2  6101  caofinvl  6107  f1od2  6238  cc3  7269  plusffng  12789  grpinvfng  12922  grpinvf1o  12945  mulgfng  12992  srg1zr  13175  scaffng  13404  neif  13726  fnmptd  14641
  Copyright terms: Public domain W3C validator