ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1d Unicode version

Theorem fneq1d 5410
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1d.1  |-  ( ph  ->  F  =  G )
Assertion
Ref Expression
fneq1d  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )

Proof of Theorem fneq1d
StepHypRef Expression
1 fneq1d.1 . 2  |-  ( ph  ->  F  =  G )
2 fneq1 5408 . 2  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by:  fneq12d  5412  f1o00  5607  f1ompt  5785  fmpt2d  5796  f1ocnvd  6206  offval2  6232  ofrfval2  6233  caofinvl  6242  f1od2  6379  cc3  7450  ccatvalfn  11131  swrdlen  11179  plusffng  13393  grpinvfng  13572  grpinvf1o  13598  mulgfng  13656  srg1zr  13945  scaffng  14267  neif  14809  fnmptd  16126
  Copyright terms: Public domain W3C validator