| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 |
|
| Ref | Expression |
|---|---|
| fneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 |
. 2
| |
| 2 | fneq1 5362 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: fneq12d 5366 f1o00 5557 f1ompt 5731 fmpt2d 5742 f1ocnvd 6148 offval2 6174 ofrfval2 6175 caofinvl 6184 f1od2 6321 cc3 7380 ccatvalfn 11057 swrdlen 11105 plusffng 13197 grpinvfng 13376 grpinvf1o 13402 mulgfng 13460 srg1zr 13749 scaffng 14071 neif 14613 fnmptd 15740 |
| Copyright terms: Public domain | W3C validator |