| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 |
|
| Ref | Expression |
|---|---|
| fneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 |
. 2
| |
| 2 | fneq1 5408 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 df-fn 5320 |
| This theorem is referenced by: fneq12d 5412 f1o00 5607 f1ompt 5785 fmpt2d 5796 f1ocnvd 6206 offval2 6232 ofrfval2 6233 caofinvl 6242 f1od2 6379 cc3 7450 ccatvalfn 11131 swrdlen 11179 plusffng 13393 grpinvfng 13572 grpinvf1o 13598 mulgfng 13656 srg1zr 13945 scaffng 14267 neif 14809 fnmptd 16126 |
| Copyright terms: Public domain | W3C validator |