| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq1d.1 |
|
| Ref | Expression |
|---|---|
| fneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1d.1 |
. 2
| |
| 2 | fneq1 5381 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-fun 5292 df-fn 5293 |
| This theorem is referenced by: fneq12d 5385 f1o00 5580 f1ompt 5754 fmpt2d 5765 f1ocnvd 6171 offval2 6197 ofrfval2 6198 caofinvl 6207 f1od2 6344 cc3 7415 ccatvalfn 11095 swrdlen 11143 plusffng 13312 grpinvfng 13491 grpinvf1o 13517 mulgfng 13575 srg1zr 13864 scaffng 14186 neif 14728 fnmptd 15940 |
| Copyright terms: Public domain | W3C validator |