| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fn 5262 |
. 2
| |
| 4 | df-fn 5262 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 |
| This theorem is referenced by: fneq2d 5350 fneq2i 5354 feq2 5394 foeq2 5480 f1o00 5542 eqfnfv2 5663 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemi1 6399 tfrlemi14d 6400 tfrexlem 6401 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfr1onlemaccex 6415 tfr1onlemres 6416 ixpeq1 6777 0fz1 10137 |
| Copyright terms: Public domain | W3C validator |