| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fn 5274 |
. 2
| |
| 4 | df-fn 5274 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5274 |
| This theorem is referenced by: fneq2d 5365 fneq2i 5369 feq2 5409 foeq2 5495 f1o00 5557 eqfnfv2 5678 tfr0dm 6408 tfrlemisucaccv 6411 tfrlemi1 6418 tfrlemi14d 6419 tfrexlem 6420 tfr1onlemsucfn 6426 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfr1onlemaccex 6434 tfr1onlemres 6435 ixpeq1 6796 0fz1 10167 |
| Copyright terms: Public domain | W3C validator |