| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fn 5275 |
. 2
| |
| 4 | df-fn 5275 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5275 |
| This theorem is referenced by: fneq2d 5366 fneq2i 5370 feq2 5411 foeq2 5497 f1o00 5559 eqfnfv2 5680 tfr0dm 6410 tfrlemisucaccv 6413 tfrlemi1 6420 tfrlemi14d 6421 tfrexlem 6422 tfr1onlemsucfn 6428 tfr1onlemsucaccv 6429 tfr1onlembxssdm 6431 tfr1onlembfn 6432 tfr1onlemaccex 6436 tfr1onlemres 6437 ixpeq1 6798 0fz1 10169 |
| Copyright terms: Public domain | W3C validator |