| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2239 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fn 5321 |
. 2
| |
| 4 | df-fn 5321 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5321 |
| This theorem is referenced by: fneq2d 5412 fneq2i 5416 feq2 5457 foeq2 5545 f1o00 5608 eqfnfv2 5733 tfr0dm 6468 tfrlemisucaccv 6471 tfrlemi1 6478 tfrlemi14d 6479 tfrexlem 6480 tfr1onlemsucfn 6486 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfr1onlemaccex 6494 tfr1onlemres 6495 ixpeq1 6856 0fz1 10241 |
| Copyright terms: Public domain | W3C validator |