| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2217 |
. . 3
| |
| 2 | 1 | anbi2d 464 |
. 2
|
| 3 | df-fn 5293 |
. 2
| |
| 4 | df-fn 5293 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-fn 5293 |
| This theorem is referenced by: fneq2d 5384 fneq2i 5388 feq2 5429 foeq2 5517 f1o00 5580 eqfnfv2 5701 tfr0dm 6431 tfrlemisucaccv 6434 tfrlemi1 6441 tfrlemi14d 6442 tfrexlem 6443 tfr1onlemsucfn 6449 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfr1onlemaccex 6457 tfr1onlemres 6458 ixpeq1 6819 0fz1 10202 |
| Copyright terms: Public domain | W3C validator |