Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2175 | . . 3 | |
2 | 1 | anbi2d 460 | . 2 |
3 | df-fn 5191 | . 2 | |
4 | df-fn 5191 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 cdm 4604 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 |
This theorem is referenced by: fneq2d 5279 fneq2i 5283 feq2 5321 foeq2 5407 f1o00 5467 eqfnfv2 5584 tfr0dm 6290 tfrlemisucaccv 6293 tfrlemi1 6300 tfrlemi14d 6301 tfrexlem 6302 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfr1onlemaccex 6316 tfr1onlemres 6317 ixpeq1 6675 0fz1 9980 |
Copyright terms: Public domain | W3C validator |