ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2 Unicode version

Theorem fneq2 5364
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq2  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )

Proof of Theorem fneq2
StepHypRef Expression
1 eqeq2 2215 . . 3  |-  ( A  =  B  ->  ( dom  F  =  A  <->  dom  F  =  B ) )
21anbi2d 464 . 2  |-  ( A  =  B  ->  (
( Fun  F  /\  dom  F  =  A )  <-> 
( Fun  F  /\  dom  F  =  B ) ) )
3 df-fn 5275 . 2  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
4 df-fn 5275 . 2  |-  ( F  Fn  B  <->  ( Fun  F  /\  dom  F  =  B ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   dom cdm 4676   Fun wfun 5266    Fn wfn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-fn 5275
This theorem is referenced by:  fneq2d  5366  fneq2i  5370  feq2  5411  foeq2  5497  f1o00  5559  eqfnfv2  5680  tfr0dm  6410  tfrlemisucaccv  6413  tfrlemi1  6420  tfrlemi14d  6421  tfrexlem  6422  tfr1onlemsucfn  6428  tfr1onlemsucaccv  6429  tfr1onlembxssdm  6431  tfr1onlembfn  6432  tfr1onlemaccex  6436  tfr1onlemres  6437  ixpeq1  6798  0fz1  10169
  Copyright terms: Public domain W3C validator