ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffn Unicode version

Theorem nffn 5314
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1  |-  F/_ x F
nffn.2  |-  F/_ x A
Assertion
Ref Expression
nffn  |-  F/ x  F  Fn  A

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 5221 . 2  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
2 nffn.1 . . . 4  |-  F/_ x F
32nffun 5241 . . 3  |-  F/ x Fun  F
42nfdm 4873 . . . 4  |-  F/_ x dom  F
5 nffn.2 . . . 4  |-  F/_ x A
64, 5nfeq 2327 . . 3  |-  F/ x dom  F  =  A
73, 6nfan 1565 . 2  |-  F/ x
( Fun  F  /\  dom  F  =  A )
81, 7nfxfr 1474 1  |-  F/ x  F  Fn  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   F/wnf 1460   F/_wnfc 2306   dom cdm 4628   Fun wfun 5212    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221
This theorem is referenced by:  nff  5364  nffo  5439  nfixpxy  6719  nfixp1  6720
  Copyright terms: Public domain W3C validator