| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnunsn | Unicode version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnunop.x |
|
| fnunop.y |
|
| fnunop.f |
|
| fnunop.g |
|
| fnunop.e |
|
| fnunop.d |
|
| Ref | Expression |
|---|---|
| fnunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.f |
. . 3
| |
| 2 | fnunop.x |
. . . 4
| |
| 3 | fnunop.y |
. . . 4
| |
| 4 | fnsng 5306 |
. . . 4
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . 3
|
| 6 | fnunop.d |
. . . 4
| |
| 7 | disjsn 3685 |
. . . 4
| |
| 8 | 6, 7 | sylibr 134 |
. . 3
|
| 9 | fnun 5367 |
. . 3
| |
| 10 | 1, 5, 8, 9 | syl21anc 1248 |
. 2
|
| 11 | fnunop.g |
. . . 4
| |
| 12 | 11 | fneq1i 5353 |
. . 3
|
| 13 | fnunop.e |
. . . 4
| |
| 14 | 13 | fneq2i 5354 |
. . 3
|
| 15 | 12, 14 | bitri 184 |
. 2
|
| 16 | 10, 15 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: tfrlemisucfn 6391 tfr1onlemsucfn 6407 |
| Copyright terms: Public domain | W3C validator |