ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnunsn Unicode version

Theorem fnunsn 5234
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
fnunop.x  |-  ( ph  ->  X  e.  _V )
fnunop.y  |-  ( ph  ->  Y  e.  _V )
fnunop.f  |-  ( ph  ->  F  Fn  D )
fnunop.g  |-  G  =  ( F  u.  { <. X ,  Y >. } )
fnunop.e  |-  E  =  ( D  u.  { X } )
fnunop.d  |-  ( ph  ->  -.  X  e.  D
)
Assertion
Ref Expression
fnunsn  |-  ( ph  ->  G  Fn  E )

Proof of Theorem fnunsn
StepHypRef Expression
1 fnunop.f . . 3  |-  ( ph  ->  F  Fn  D )
2 fnunop.x . . . 4  |-  ( ph  ->  X  e.  _V )
3 fnunop.y . . . 4  |-  ( ph  ->  Y  e.  _V )
4 fnsng 5174 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { <. X ,  Y >. }  Fn  { X } )
52, 3, 4syl2anc 409 . . 3  |-  ( ph  ->  { <. X ,  Y >. }  Fn  { X } )
6 fnunop.d . . . 4  |-  ( ph  ->  -.  X  e.  D
)
7 disjsn 3589 . . . 4  |-  ( ( D  i^i  { X } )  =  (/)  <->  -.  X  e.  D )
86, 7sylibr 133 . . 3  |-  ( ph  ->  ( D  i^i  { X } )  =  (/) )
9 fnun 5233 . . 3  |-  ( ( ( F  Fn  D  /\  { <. X ,  Y >. }  Fn  { X } )  /\  ( D  i^i  { X }
)  =  (/) )  -> 
( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X }
) )
101, 5, 8, 9syl21anc 1216 . 2  |-  ( ph  ->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X }
) )
11 fnunop.g . . . 4  |-  G  =  ( F  u.  { <. X ,  Y >. } )
1211fneq1i 5221 . . 3  |-  ( G  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  E
)
13 fnunop.e . . . 4  |-  E  =  ( D  u.  { X } )
1413fneq2i 5222 . . 3  |-  ( ( F  u.  { <. X ,  Y >. } )  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X } ) )
1512, 14bitri 183 . 2  |-  ( G  Fn  E  <->  ( F  u.  { <. X ,  Y >. } )  Fn  ( D  u.  { X } ) )
1610, 15sylibr 133 1  |-  ( ph  ->  G  Fn  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1332    e. wcel 1481   _Vcvv 2687    u. cun 3070    i^i cin 3071   (/)c0 3364   {csn 3528   <.cop 3531    Fn wfn 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-fun 5129  df-fn 5130
This theorem is referenced by:  tfrlemisucfn  6225  tfr1onlemsucfn  6241
  Copyright terms: Public domain W3C validator