ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2o Unicode version

Theorem fnpr2o 13286
Description: Function with a domain of  2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fnpr2o  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )

Proof of Theorem fnpr2o
StepHypRef Expression
1 peano1 4660 . . . 4  |-  (/)  e.  om
21a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  e.  om )
3 1onn 6629 . . . 4  |-  1o  e.  om
43a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  1o  e.  om )
5 simpl 109 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
6 simpr 110 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
7 1n0 6541 . . . . 5  |-  1o  =/=  (/)
87necomi 2463 . . . 4  |-  (/)  =/=  1o
98a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  =/=  1o )
10 fnprg 5348 . . 3  |-  ( ( ( (/)  e.  om  /\  1o  e.  om )  /\  ( A  e.  V  /\  B  e.  W
)  /\  (/)  =/=  1o )  ->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  { (/) ,  1o } )
112, 4, 5, 6, 9, 10syl221anc 1261 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  { (/) ,  1o } )
12 df2o3 6539 . . 3  |-  2o  =  { (/) ,  1o }
1312fneq2i 5388 . 2  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  <->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  { (/) ,  1o } )
1411, 13sylibr 134 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178    =/= wne 2378   (/)c0 3468   {cpr 3644   <.cop 3646   omcom 4656    Fn wfn 5285   1oc1o 6518   2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293  df-1o 6525  df-2o 6526
This theorem is referenced by:  fnpr2ob  13287  xpsfeq  13292  xpsfrnel2  13293
  Copyright terms: Public domain W3C validator