![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneq1i | Unicode version |
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fneq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | fneq1 5053 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2614 df-un 2988 df-in 2990 df-ss 2997 df-sn 3428 df-pr 3429 df-op 3431 df-br 3812 df-opab 3866 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-fun 4969 df-fn 4970 |
This theorem is referenced by: fnunsn 5072 fnopabg 5088 f1oun 5219 f1oi 5237 f1osn 5239 ovid 5694 tfri1d 6030 frec2uzrand 9699 frec2uzf1od 9700 frecfzennn 9720 |
Copyright terms: Public domain | W3C validator |