ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1i Unicode version

Theorem fneq1i 5290
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1i.1  |-  F  =  G
Assertion
Ref Expression
fneq1i  |-  ( F  Fn  A  <->  G  Fn  A )

Proof of Theorem fneq1i
StepHypRef Expression
1 fneq1i.1 . 2  |-  F  =  G
2 fneq1 5284 . 2  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
31, 2ax-mp 5 1  |-  ( F  Fn  A  <->  G  Fn  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    Fn wfn 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-fun 5198  df-fn 5199
This theorem is referenced by:  fnunsn  5303  fnopabg  5319  f1oun  5460  f1oi  5478  f1osn  5480  ovid  5967  tfri1d  6312  frec2uzrand  10354  frec2uzf1od  10355  frecfzennn  10375  dfrelog  13540  nninfsellemeqinf  14014
  Copyright terms: Public domain W3C validator