Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq1i | Unicode version |
Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq1i.1 |
Ref | Expression |
---|---|
fneq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1i.1 | . 2 | |
2 | fneq1 5284 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wfn 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-fun 5198 df-fn 5199 |
This theorem is referenced by: fnunsn 5303 fnopabg 5319 f1oun 5460 f1oi 5478 f1osn 5480 ovid 5967 tfri1d 6312 frec2uzrand 10354 frec2uzf1od 10355 frecfzennn 10375 dfrelog 13540 nninfsellemeqinf 14014 |
Copyright terms: Public domain | W3C validator |