ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpos0 Unicode version

Theorem tpos0 6418
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0  |- tpos  (/)  =  (/)

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 4843 . . . 4  |-  Rel  (/)
2 eqid 2229 . . . . 5  |-  (/)  =  (/)
3 fn0 5442 . . . . 5  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
42, 3mpbir 146 . . . 4  |-  (/)  Fn  (/)
5 tposfn2 6410 . . . 4  |-  ( Rel  (/)  ->  ( (/)  Fn  (/)  -> tpos  (/)  Fn  `' (/) ) )
61, 4, 5mp2 16 . . 3  |- tpos  (/)  Fn  `' (/)
7 cnv0 5131 . . . 4  |-  `' (/)  =  (/)
87fneq2i 5415 . . 3  |-  (tpos  (/)  Fn  `' (/)  <-> tpos  (/)  Fn  (/) )
96, 8mpbi 145 . 2  |- tpos  (/)  Fn  (/)
10 fn0 5442 . 2  |-  (tpos  (/)  Fn  (/)  <-> tpos  (/)  =  (/) )
119, 10mpbi 145 1  |- tpos  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395   (/)c0 3491   `'ccnv 4717   Rel wrel 4723    Fn wfn 5312  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-tpos 6389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator