ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpos0 Unicode version

Theorem tpos0 6360
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0  |- tpos  (/)  =  (/)

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 4800 . . . 4  |-  Rel  (/)
2 eqid 2205 . . . . 5  |-  (/)  =  (/)
3 fn0 5395 . . . . 5  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
42, 3mpbir 146 . . . 4  |-  (/)  Fn  (/)
5 tposfn2 6352 . . . 4  |-  ( Rel  (/)  ->  ( (/)  Fn  (/)  -> tpos  (/)  Fn  `' (/) ) )
61, 4, 5mp2 16 . . 3  |- tpos  (/)  Fn  `' (/)
7 cnv0 5086 . . . 4  |-  `' (/)  =  (/)
87fneq2i 5369 . . 3  |-  (tpos  (/)  Fn  `' (/)  <-> tpos  (/)  Fn  (/) )
96, 8mpbi 145 . 2  |- tpos  (/)  Fn  (/)
10 fn0 5395 . 2  |-  (tpos  (/)  Fn  (/)  <-> tpos  (/)  =  (/) )
119, 10mpbi 145 1  |- tpos  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   (/)c0 3460   `'ccnv 4674   Rel wrel 4680    Fn wfn 5266  tpos ctpos 6330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-tpos 6331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator