ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfixp Unicode version

Theorem dfixp 6524
Description: Eliminate the expression  { x  |  x  e.  A } in df-ixp 6523, under the assumption that  A and  x are disjoint. This way, we can say that  x is bound in  X_ x  e.  A B even if it appears free in  A. (Contributed by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
dfixp  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
Distinct variable groups:    x, f, A    B, f    x, A
Allowed substitution hint:    B( x)

Proof of Theorem dfixp
StepHypRef Expression
1 df-ixp 6523 . 2  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
) }
2 abid2 2220 . . . . 5  |-  { x  |  x  e.  A }  =  A
32fneq2i 5154 . . . 4  |-  ( f  Fn  { x  |  x  e.  A }  <->  f  Fn  A )
43anbi1i 449 . . 3  |-  ( ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
)  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
) )
54abbii 2215 . 2  |-  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) }
61, 5eqtri 2120 1  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1299    e. wcel 1448   {cab 2086   A.wral 2375    Fn wfn 5054   ` cfv 5059   X_cixp 6522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-11 1452  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-fn 5062  df-ixp 6523
This theorem is referenced by:  ixpsnval  6525  elixp2  6526  ixpeq1  6533  cbvixp  6539  ixp0x  6550
  Copyright terms: Public domain W3C validator