Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfixp | Unicode version |
Description: Eliminate the expression in df-ixp 6665, under the assumption that and are disjoint. This way, we can say that is bound in even if it appears free in . (Contributed by Mario Carneiro, 12-Aug-2016.) |
Ref | Expression |
---|---|
dfixp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6665 | . 2 | |
2 | abid2 2287 | . . . . 5 | |
3 | 2 | fneq2i 5283 | . . . 4 |
4 | 3 | anbi1i 454 | . . 3 |
5 | 4 | abbii 2282 | . 2 |
6 | 1, 5 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 wfn 5183 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-fn 5191 df-ixp 6665 |
This theorem is referenced by: ixpsnval 6667 elixp2 6668 ixpeq1 6675 cbvixp 6681 ixp0x 6692 |
Copyright terms: Public domain | W3C validator |