ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab1 Unicode version

Theorem hbab1 2159
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbab1  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2157 . 2  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
2 hbs1 1931 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
31, 2hbxfrbi 1465 1  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   [wsb 1755    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157
This theorem is referenced by:  nfsab1  2160  abeq2  2279
  Copyright terms: Public domain W3C validator