ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 Unicode version

Theorem nfsab1 2160
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1  |-  F/ x  y  e.  { x  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2159 . 2  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
21nfi 1455 1  |-  F/ x  y  e.  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1453    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157
This theorem is referenced by:  abbi  2284  nfab1  2314  ralab2  2894  rexab2  2896  abn0m  3440  rabn0m  3442  eluniab  3808  elintab  3842  intexabim  4138  iinexgm  4140  opabex3d  6100  opabex3  6101
  Copyright terms: Public domain W3C validator