ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 Unicode version

Theorem nfsab1 2085
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1  |-  F/ x  y  e.  { x  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2084 . 2  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
21nfi 1403 1  |-  F/ x  y  e.  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1401    e. wcel 1445   {cab 2081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700  df-clab 2082
This theorem is referenced by:  abbi  2208  nfab1  2237  ralab2  2793  rexab2  2795  abn0m  3327  rabn0m  3329  eluniab  3687  elintab  3721  intexabim  4009  iinexgm  4011  opabex3d  5930  opabex3  5931
  Copyright terms: Public domain W3C validator