ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 Unicode version

Theorem nfsab1 2197
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1  |-  F/ x  y  e.  { x  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2196 . 2  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
21nfi 1486 1  |-  F/ x  y  e.  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1484    e. wcel 2178   {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194
This theorem is referenced by:  abbi  2321  nfab1  2352  ralab2  2944  rexab2  2946  abn0m  3494  rabn0m  3496  eluniab  3876  elintab  3910  intexabim  4212  iinexgm  4214  opabex3d  6229  opabex3  6230
  Copyright terms: Public domain W3C validator