ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsab1 Unicode version

Theorem nfsab1 2155
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1  |-  F/ x  y  e.  { x  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2154 . 2  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
21nfi 1450 1  |-  F/ x  y  e.  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   F/wnf 1448    e. wcel 2136   {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152
This theorem is referenced by:  abbi  2280  nfab1  2310  ralab2  2890  rexab2  2892  abn0m  3434  rabn0m  3436  eluniab  3801  elintab  3835  intexabim  4131  iinexgm  4133  opabex3d  6089  opabex3  6090
  Copyright terms: Public domain W3C validator