![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbab1 | ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2076 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | hbs1 1863 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | hbxfrbi 1407 | 1 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1288 ∈ wcel 1439 [wsb 1693 {cab 2075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-sb 1694 df-clab 2076 |
This theorem is referenced by: nfsab1 2079 abeq2 2197 |
Copyright terms: Public domain | W3C validator |