| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbab1 | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbab1 | ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2216 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 2 | hbs1 1989 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | hbxfrbi 1518 | 1 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 [wsb 1808 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 |
| This theorem is referenced by: nfsab1 2219 abeq2 2338 |
| Copyright terms: Public domain | W3C validator |