ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab1 GIF version

Theorem hbab1 2078
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbab1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2076 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 hbs1 1863 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
31, 2hbxfrbi 1407 1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1288  wcel 1439  [wsb 1693  {cab 2075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473
This theorem depends on definitions:  df-bi 116  df-sb 1694  df-clab 2076
This theorem is referenced by:  nfsab1  2079  abeq2  2197
  Copyright terms: Public domain W3C validator