![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbab1 | ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2164 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | hbs1 1938 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | hbxfrbi 1472 | 1 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 [wsb 1762 ∈ wcel 2148 {cab 2163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 |
This theorem is referenced by: nfsab1 2167 abeq2 2286 |
Copyright terms: Public domain | W3C validator |