ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab1 GIF version

Theorem hbab1 2196
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbab1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2194 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 hbs1 1967 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
31, 2hbxfrbi 1496 1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  [wsb 1786  wcel 2178  {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194
This theorem is referenced by:  nfsab1  2197  abeq2  2316
  Copyright terms: Public domain W3C validator