ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbs1 Unicode version

Theorem hbs1 1938
Description:  x is not free in  [
y  /  x ] ph when  x and  y are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
hbs1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem hbs1
StepHypRef Expression
1 sb6 1886 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 ax-ial 1534 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x A. x ( x  =  y  ->  ph ) )
31, 2hbxfrbi 1472 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by:  nfs1v  1939  sb9v  1978  eu1  2051  mopick  2104  hbab1  2166
  Copyright terms: Public domain W3C validator