ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2 Unicode version

Theorem abeq2 2279
Description: Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2284 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable  ph (that has a free variable  x) to a theorem with a class variable  A, we substitute  x  e.  A for  ph throughout and simplify, where  A is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable  A to one with  ph, we substitute  { x  |  ph } for  A throughout and simplify, where  x and  ph are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
abeq2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-17 1519 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
2 hbab1 2159 . . 3  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
31, 2cleqh 2270 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  x  e.  { x  | 
ph } ) )
4 abid 2158 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
54bibi2i 226 . . 3  |-  ( ( x  e.  A  <->  x  e.  { x  |  ph }
)  <->  ( x  e.  A  <->  ph ) )
65albii 1463 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  ph } )  <->  A. x
( x  e.  A  <->  ph ) )
73, 6bitri 183 1  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by:  abeq1  2280  abbi2i  2285  abbi2dv  2289  clabel  2297  sbabel  2339  rabid2  2646  ru  2954  sbcabel  3036  dfss2  3136  vpwex  4163  dmopab3  4822
  Copyright terms: Public domain W3C validator