ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2 Unicode version

Theorem abeq2 2305
Description: Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2310 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable  ph (that has a free variable  x) to a theorem with a class variable  A, we substitute  x  e.  A for  ph throughout and simplify, where  A is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable  A to one with  ph, we substitute  { x  |  ph } for  A throughout and simplify, where  x and  ph are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
abeq2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-17 1540 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
2 hbab1 2185 . . 3  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
31, 2cleqh 2296 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  x  e.  { x  | 
ph } ) )
4 abid 2184 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
54bibi2i 227 . . 3  |-  ( ( x  e.  A  <->  x  e.  { x  |  ph }
)  <->  ( x  e.  A  <->  ph ) )
65albii 1484 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  ph } )  <->  A. x
( x  e.  A  <->  ph ) )
73, 6bitri 184 1  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  abeq1  2306  abbi2i  2311  abbi2dv  2315  clabel  2323  sbabel  2366  rabid2  2674  ru  2988  sbcabel  3071  dfss2  3172  vpwex  4212  dmopab3  4879
  Copyright terms: Public domain W3C validator