ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbmo1 Unicode version

Theorem hbmo1 2064
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
hbmo1  |-  ( E* x ph  ->  A. x E* x ph )

Proof of Theorem hbmo1
StepHypRef Expression
1 df-mo 2030 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
2 hbe1 1495 . . 3  |-  ( E. x ph  ->  A. x E. x ph )
3 hbeu1 2036 . . 3  |-  ( E! x ph  ->  A. x E! x ph )
42, 3hbim 1545 . 2  |-  ( ( E. x ph  ->  E! x ph )  ->  A. x ( E. x ph  ->  E! x ph ) )
51, 4hbxfrbi 1472 1  |-  ( E* x ph  ->  A. x E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   E.wex 1492   E!weu 2026   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-eu 2029  df-mo 2030
This theorem is referenced by:  mopick2  2109  moexexdc  2110
  Copyright terms: Public domain W3C validator