ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu1 Unicode version

Theorem hbeu1 2029
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.)
Assertion
Ref Expression
hbeu1  |-  ( E! x ph  ->  A. x E! x ph )

Proof of Theorem hbeu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2022 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 hba1 1533 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  A. x A. x ( ph  <->  x  =  y ) )
32hbex 1629 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  A. x E. y A. x ( ph  <->  x  =  y ) )
41, 3hbxfrbi 1465 1  |-  ( E! x ph  ->  A. x E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   E.wex 1485   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-eu 2022
This theorem is referenced by:  hbmo1  2057  eupicka  2099  exists2  2116
  Copyright terms: Public domain W3C validator