ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moexexdc Unicode version

Theorem moexexdc 2103
Description: "At most one" double quantification. (Contributed by Jim Kingdon, 5-Jul-2018.)
Hypothesis
Ref Expression
moexexdc.1  |-  F/ y
ph
Assertion
Ref Expression
moexexdc  |-  (DECID  E. x ph  ->  ( ( E* x ph  /\  A. x E* y ps )  ->  E* y E. x
( ph  /\  ps )
) )

Proof of Theorem moexexdc
StepHypRef Expression
1 df-dc 830 . 2  |-  (DECID  E. x ph 
<->  ( E. x ph  \/  -.  E. x ph ) )
2 hbmo1 2057 . . . . . 6  |-  ( E* x ph  ->  A. x E* x ph )
3 hba1 1533 . . . . . . 7  |-  ( A. x E* y ps  ->  A. x A. x E* y ps )
4 hbe1 1488 . . . . . . . 8  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
54hbmo 2058 . . . . . . 7  |-  ( E* y E. x (
ph  /\  ps )  ->  A. x E* y E. x ( ph  /\  ps ) )
63, 5hbim 1538 . . . . . 6  |-  ( ( A. x E* y ps  ->  E* y E. x ( ph  /\  ps ) )  ->  A. x
( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
72, 6hbim 1538 . . . . 5  |-  ( ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\  ps ) ) )  ->  A. x ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) ) )
8 moexexdc.1 . . . . . . . 8  |-  F/ y
ph
98nfri 1512 . . . . . . 7  |-  ( ph  ->  A. y ph )
109hbmo 2058 . . . . . . 7  |-  ( E* x ph  ->  A. y E* x ph )
11 mopick 2097 . . . . . . . . 9  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
1211ex 114 . . . . . . . 8  |-  ( E* x ph  ->  ( E. x ( ph  /\  ps )  ->  ( ph  ->  ps ) ) )
1312com3r 79 . . . . . . 7  |-  ( ph  ->  ( E* x ph  ->  ( E. x (
ph  /\  ps )  ->  ps ) ) )
149, 10, 13alrimdh 1472 . . . . . 6  |-  ( ph  ->  ( E* x ph  ->  A. y ( E. x ( ph  /\  ps )  ->  ps )
) )
15 moim 2083 . . . . . . 7  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) )
1615spsd 1531 . . . . . 6  |-  ( A. y ( E. x
( ph  /\  ps )  ->  ps )  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) )
1714, 16syl6 33 . . . . 5  |-  ( ph  ->  ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) ) )
187, 17exlimih 1586 . . . 4  |-  ( E. x ph  ->  ( E* x ph  ->  ( A. x E* y ps 
->  E* y E. x
( ph  /\  ps )
) ) )
199hbex 1629 . . . . . . . . 9  |-  ( E. x ph  ->  A. y E. x ph )
20 exsimpl 1610 . . . . . . . . 9  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
2119, 20exlimih 1586 . . . . . . . 8  |-  ( E. y E. x (
ph  /\  ps )  ->  E. x ph )
2221con3i 627 . . . . . . 7  |-  ( -. 
E. x ph  ->  -. 
E. y E. x
( ph  /\  ps )
)
23 mon 2048 . . . . . . 7  |-  ( -. 
E. y E. x
( ph  /\  ps )  ->  E* y E. x
( ph  /\  ps )
)
2422, 23syl 14 . . . . . 6  |-  ( -. 
E. x ph  ->  E* y E. x (
ph  /\  ps )
)
2524a1d 22 . . . . 5  |-  ( -. 
E. x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\  ps ) ) )
2625a1d 22 . . . 4  |-  ( -. 
E. x ph  ->  ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\  ps ) ) ) )
2718, 26jaoi 711 . . 3  |-  ( ( E. x ph  \/  -.  E. x ph )  ->  ( E* x ph  ->  ( A. x E* y ps  ->  E* y E. x ( ph  /\ 
ps ) ) ) )
2827impd 252 . 2  |-  ( ( E. x ph  \/  -.  E. x ph )  ->  ( ( E* x ph  /\  A. x E* y ps )  ->  E* y E. x (
ph  /\  ps )
) )
291, 28sylbi 120 1  |-  (DECID  E. x ph  ->  ( ( E* x ph  /\  A. x E* y ps )  ->  E* y E. x
( ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829   A.wal 1346   F/wnf 1453   E.wex 1485   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  2moswapdc  2109
  Copyright terms: Public domain W3C validator