ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbmo Unicode version

Theorem hbmo 2093
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
hbmo.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbmo  |-  ( E* y ph  ->  A. x E* y ph )

Proof of Theorem hbmo
StepHypRef Expression
1 df-mo 2058 . 2  |-  ( E* y ph  <->  ( E. y ph  ->  E! y ph ) )
2 hbmo.1 . . . 4  |-  ( ph  ->  A. x ph )
32hbex 1659 . . 3  |-  ( E. y ph  ->  A. x E. y ph )
42hbeu 2075 . . 3  |-  ( E! y ph  ->  A. x E! y ph )
53, 4hbim 1568 . 2  |-  ( ( E. y ph  ->  E! y ph )  ->  A. x ( E. y ph  ->  E! y ph ) )
61, 5hbxfrbi 1495 1  |-  ( E* y ph  ->  A. x E* y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515   E!weu 2054   E*wmo 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058
This theorem is referenced by:  moexexdc  2138  2moex  2140  2euex  2141  2exeu  2146
  Copyright terms: Public domain W3C validator