ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbmo Unicode version

Theorem hbmo 2081
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
hbmo.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbmo  |-  ( E* y ph  ->  A. x E* y ph )

Proof of Theorem hbmo
StepHypRef Expression
1 df-mo 2046 . 2  |-  ( E* y ph  <->  ( E. y ph  ->  E! y ph ) )
2 hbmo.1 . . . 4  |-  ( ph  ->  A. x ph )
32hbex 1647 . . 3  |-  ( E. y ph  ->  A. x E. y ph )
42hbeu 2063 . . 3  |-  ( E! y ph  ->  A. x E! y ph )
53, 4hbim 1556 . 2  |-  ( ( E. y ph  ->  E! y ph )  ->  A. x ( E. y ph  ->  E! y ph ) )
61, 5hbxfrbi 1483 1  |-  ( E* y ph  ->  A. x E* y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   E.wex 1503   E!weu 2042   E*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by:  moexexdc  2126  2moex  2128  2euex  2129  2exeu  2134
  Copyright terms: Public domain W3C validator