| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 |
. 2
| |
| 2 | 3eqtr4i.3 |
. . 3
| |
| 3 | 3eqtr4i.1 |
. . 3
| |
| 4 | 2, 3 | eqtr4i 2220 |
. 2
|
| 5 | 1, 4 | eqtr4i 2220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: rabswap 2676 rabbiia 2748 cbvrab 2761 cbvcsbw 3088 cbvcsb 3089 csbco 3094 csbcow 3095 cbvrabcsf 3150 un4 3324 in13 3377 in31 3378 in4 3380 indifcom 3410 indir 3413 undir 3414 notrab 3441 dfnul3 3454 rab0 3480 prcom 3699 tprot 3716 tpcoma 3717 tpcomb 3718 tpass 3719 qdassr 3721 pw0 3770 opid 3827 int0 3889 cbviun 3954 cbviin 3955 iunrab 3965 iunin1 3982 cbvopab 4105 cbvopab1 4107 cbvopab2 4108 cbvopab1s 4109 cbvopab2v 4111 unopab 4113 cbvmptf 4128 cbvmpt 4129 iunopab 4317 uniuni 4487 2ordpr 4561 rabxp 4701 fconstmpt 4711 inxp 4801 cnvco 4852 rnmpt 4915 resundi 4960 resundir 4961 resindi 4962 resindir 4963 rescom 4972 resima 4980 imadmrn 5020 cnvimarndm 5034 cnvi 5075 rnun 5079 imaundi 5083 cnvxp 5089 imainrect 5116 imacnvcnv 5135 resdmres 5162 imadmres 5163 mptpreima 5164 cbviota 5225 sb8iota 5227 resdif 5529 cbvriota 5891 dfoprab2 5973 cbvoprab1 5998 cbvoprab2 5999 cbvoprab12 6000 cbvoprab3 6002 cbvmpox 6004 resoprab 6022 caov32 6115 caov31 6117 ofmres 6202 dfopab2 6256 dfxp3 6261 dmmpossx 6266 fmpox 6267 tposco 6342 mapsncnv 6763 cbvixp 6783 xpcomco 6894 sbthlemi6 7037 xp2dju 7298 djuassen 7300 dmaddpi 7409 dmmulpi 7410 dfplpq2 7438 dfmpq2 7439 dmaddpq 7463 dmmulpq 7464 axi2m1 7959 negiso 8999 nummac 9518 decsubi 9536 9t11e99 9603 fzprval 10174 fztpval 10175 sqdivapi 10732 binom2i 10757 4bc2eq6 10883 shftidt2 11014 cji 11084 xrnegiso 11444 cbvsum 11542 fsumrelem 11653 cbvprod 11740 nn0gcdsq 12393 dec5nprm 12608 dec2nprm 12609 gcdi 12614 decsplit 12623 dfrhm2 13786 rmodislmod 13983 cnfldsub 14207 dvdsrzring 14235 restco 14494 cnmptid 14601 plyid 15066 sincos3rdpi 15163 lgsdir2lem5 15357 lgsquadlem3 15404 2lgslem1b 15414 2lgsoddprmlem3d 15435 if0ab 15535 |
| Copyright terms: Public domain | W3C validator |