| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4i | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.2 |
. 2
| |
| 2 | 3eqtr4i.3 |
. . 3
| |
| 3 | 3eqtr4i.1 |
. . 3
| |
| 4 | 2, 3 | eqtr4i 2253 |
. 2
|
| 5 | 1, 4 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: rabswap 2710 rabbiia 2784 cbvrab 2797 cbvcsbw 3128 cbvcsb 3129 csbco 3134 csbcow 3135 cbvrabcsf 3190 un4 3364 in13 3417 in31 3418 in4 3420 indifcom 3450 indir 3453 undir 3454 notrab 3481 dfnul3 3494 rab0 3520 prcom 3742 tprot 3759 tpcoma 3760 tpcomb 3761 tpass 3762 qdassr 3764 pw0 3815 opid 3875 int0 3937 cbviun 4002 cbviin 4003 iunrab 4013 iunin1 4030 cbvopab 4155 cbvopab1 4157 cbvopab2 4158 cbvopab1s 4159 cbvopab2v 4161 unopab 4163 cbvmptf 4178 cbvmpt 4179 iunopab 4370 uniuni 4542 2ordpr 4616 rabxp 4756 fconstmpt 4766 inxp 4856 cnvco 4907 rnmpt 4972 resundi 5018 resundir 5019 resindi 5020 resindir 5021 rescom 5030 resima 5038 imadmrn 5078 cnvimarndm 5092 cnvi 5133 rnun 5137 imaundi 5141 cnvxp 5147 imainrect 5174 imacnvcnv 5193 resdmres 5220 imadmres 5221 mptpreima 5222 cbviota 5283 cbviotavw 5284 sb8iota 5286 resdif 5594 cbvriotavw 5965 cbvriota 5966 dfoprab2 6051 cbvoprab1 6076 cbvoprab2 6077 cbvoprab12 6078 cbvoprab3 6080 cbvmpox 6082 resoprab 6100 caov32 6193 caov31 6195 ofmres 6281 dfopab2 6335 dfxp3 6340 dmmpossx 6345 fmpox 6346 tposco 6421 mapsncnv 6842 cbvixp 6862 xpcomco 6985 sbthlemi6 7129 xp2dju 7397 djuassen 7399 dmaddpi 7512 dmmulpi 7513 dfplpq2 7541 dfmpq2 7542 dmaddpq 7566 dmmulpq 7567 axi2m1 8062 negiso 9102 nummac 9622 decsubi 9640 9t11e99 9707 fzprval 10278 fztpval 10279 sqdivapi 10845 binom2i 10870 4bc2eq6 10996 shftidt2 11343 cji 11413 xrnegiso 11773 cbvsum 11871 fsumrelem 11982 cbvprod 12069 nn0gcdsq 12722 dec5nprm 12937 dec2nprm 12938 gcdi 12943 decsplit 12952 dfrhm2 14118 rmodislmod 14315 cnfldsub 14539 dvdsrzring 14567 restco 14848 cnmptid 14955 plyid 15420 sincos3rdpi 15517 lgsdir2lem5 15711 lgsquadlem3 15758 2lgslem1b 15768 2lgsoddprmlem3d 15789 vtxval0 15854 iedgval0 15855 if0ab 16169 |
| Copyright terms: Public domain | W3C validator |