ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in31 GIF version

Theorem in31 3215
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in31 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)

Proof of Theorem in31
StepHypRef Expression
1 in12 3212 . 2 (𝐶 ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐶𝐵))
2 incom 3193 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 3193 . 2 ((𝐶𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐶𝐵))
41, 2, 33eqtr4i 2119 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1290  cin 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006
This theorem is referenced by:  inrot  3216
  Copyright terms: Public domain W3C validator