ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in12 Unicode version

Theorem in12 3212
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in12  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )

Proof of Theorem in12
StepHypRef Expression
1 incom 3193 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21ineq1i 3198 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( B  i^i  A )  i^i  C )
3 inass 3211 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
4 inass 3211 . 2  |-  ( ( B  i^i  A )  i^i  C )  =  ( B  i^i  ( A  i^i  C ) )
52, 3, 43eqtr3i 2117 1  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1290    i^i cin 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006
This theorem is referenced by:  in32  3213  in31  3215  in4  3217  resdmres  4935
  Copyright terms: Public domain W3C validator