ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in12 Unicode version

Theorem in12 3375
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in12  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )

Proof of Theorem in12
StepHypRef Expression
1 incom 3356 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21ineq1i 3361 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( B  i^i  A )  i^i  C )
3 inass 3374 . 2  |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
4 inass 3374 . 2  |-  ( ( B  i^i  A )  i^i  C )  =  ( B  i^i  ( A  i^i  C ) )
52, 3, 43eqtr3i 2225 1  |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  in32  3376  in31  3378  in4  3380  resdmres  5162
  Copyright terms: Public domain W3C validator