ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indmss Unicode version

Theorem indmss 3406
Description: De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
indmss  |-  ( ( _V  \  A )  u.  ( _V  \  B ) )  C_  ( _V  \  ( A  i^i  B ) )

Proof of Theorem indmss
StepHypRef Expression
1 difindiss 3401 1  |-  ( ( _V  \  A )  u.  ( _V  \  B ) )  C_  ( _V  \  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2749    \ cdif 3138    u. cun 3139    i^i cin 3140    C_ wss 3141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154
This theorem is referenced by:  difdifdirss  3519
  Copyright terms: Public domain W3C validator