ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difun1 Unicode version

Theorem difun1 3407
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3357 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
2 invdif 3389 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
31, 2eqtr3i 2210 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
4 undm 3405 . . . . 5  |-  ( _V 
\  ( B  u.  C ) )  =  ( ( _V  \  B )  i^i  ( _V  \  C ) )
54ineq2i 3345 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
6 invdif 3389 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  \  ( B  u.  C )
)
75, 6eqtr3i 2210 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( A  \  ( B  u.  C )
)
83, 7eqtr3i 2210 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( A  \  ( B  u.  C )
)
9 invdif 3389 . . 3  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
109difeq1i 3261 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( ( A  \  B )  \  C
)
118, 10eqtr3i 2210 1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1363   _Vcvv 2749    \ cdif 3138    u. cun 3139    i^i cin 3140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147
This theorem is referenced by:  dif32  3410  difabs  3411  difpr  3746  diffifi  6908  difinfinf  7114
  Copyright terms: Public domain W3C validator