ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difun1 Unicode version

Theorem difun1 3397
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3347 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
2 invdif 3379 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
31, 2eqtr3i 2200 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
4 undm 3395 . . . . 5  |-  ( _V 
\  ( B  u.  C ) )  =  ( ( _V  \  B )  i^i  ( _V  \  C ) )
54ineq2i 3335 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
6 invdif 3379 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  \  ( B  u.  C )
)
75, 6eqtr3i 2200 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( A  \  ( B  u.  C )
)
83, 7eqtr3i 2200 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( A  \  ( B  u.  C )
)
9 invdif 3379 . . 3  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
109difeq1i 3251 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( ( A  \  B )  \  C
)
118, 10eqtr3i 2200 1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2739    \ cdif 3128    u. cun 3129    i^i cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137
This theorem is referenced by:  dif32  3400  difabs  3401  difpr  3736  diffifi  6896  difinfinf  7102
  Copyright terms: Public domain W3C validator