ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indmss GIF version

Theorem indmss 3409
Description: De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
indmss ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))

Proof of Theorem indmss
StepHypRef Expression
1 difindiss 3404 1 ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  Vcvv 2752  cdif 3141  cun 3142  cin 3143  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157
This theorem is referenced by:  difdifdirss  3522
  Copyright terms: Public domain W3C validator