![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indmss | GIF version |
Description: De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.) |
Ref | Expression |
---|---|
indmss | ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difindiss 3269 | 1 ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2633 ∖ cdif 3010 ∪ cun 3011 ∩ cin 3012 ⊆ wss 3013 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 |
This theorem is referenced by: difdifdirss 3386 |
Copyright terms: Public domain | W3C validator |