ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difindiss Unicode version

Theorem difindiss 3391
Description: Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
Assertion
Ref Expression
difindiss  |-  ( ( A  \  B )  u.  ( A  \  C ) )  C_  ( A  \  ( B  i^i  C ) )

Proof of Theorem difindiss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3278 . . 3  |-  ( x  e.  ( ( A 
\  B )  u.  ( A  \  C
) )  <->  ( x  e.  ( A  \  B
)  \/  x  e.  ( A  \  C
) ) )
2 eldif 3140 . . . . . . 7  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
3 eldif 3140 . . . . . . 7  |-  ( x  e.  ( A  \  C )  <->  ( x  e.  A  /\  -.  x  e.  C ) )
42, 3orbi12i 764 . . . . . 6  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( A 
\  C ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  \/  (
x  e.  A  /\  -.  x  e.  C
) ) )
5 andi 818 . . . . . 6  |-  ( ( x  e.  A  /\  ( -.  x  e.  B  \/  -.  x  e.  C ) )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  \/  ( x  e.  A  /\  -.  x  e.  C )
) )
64, 5bitr4i 187 . . . . 5  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( A 
\  C ) )  <-> 
( x  e.  A  /\  ( -.  x  e.  B  \/  -.  x  e.  C ) ) )
7 pm3.14 753 . . . . . 6  |-  ( ( -.  x  e.  B  \/  -.  x  e.  C
)  ->  -.  (
x  e.  B  /\  x  e.  C )
)
87anim2i 342 . . . . 5  |-  ( ( x  e.  A  /\  ( -.  x  e.  B  \/  -.  x  e.  C ) )  -> 
( x  e.  A  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
96, 8sylbi 121 . . . 4  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( A 
\  C ) )  ->  ( x  e.  A  /\  -.  (
x  e.  B  /\  x  e.  C )
) )
10 eldif 3140 . . . . 5  |-  ( x  e.  ( A  \ 
( B  i^i  C
) )  <->  ( x  e.  A  /\  -.  x  e.  ( B  i^i  C
) ) )
11 elin 3320 . . . . . . 7  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
1211notbii 668 . . . . . 6  |-  ( -.  x  e.  ( B  i^i  C )  <->  -.  (
x  e.  B  /\  x  e.  C )
)
1312anbi2i 457 . . . . 5  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  i^i  C ) )  <-> 
( x  e.  A  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
1410, 13bitr2i 185 . . . 4  |-  ( ( x  e.  A  /\  -.  ( x  e.  B  /\  x  e.  C
) )  <->  x  e.  ( A  \  ( B  i^i  C ) ) )
159, 14sylib 122 . . 3  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( A 
\  C ) )  ->  x  e.  ( A  \  ( B  i^i  C ) ) )
161, 15sylbi 121 . 2  |-  ( x  e.  ( ( A 
\  B )  u.  ( A  \  C
) )  ->  x  e.  ( A  \  ( B  i^i  C ) ) )
1716ssriv 3161 1  |-  ( ( A  \  B )  u.  ( A  \  C ) )  C_  ( A  \  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 708    e. wcel 2148    \ cdif 3128    u. cun 3129    i^i cin 3130    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by:  difdif2ss  3394  indmss  3396
  Copyright terms: Public domain W3C validator