| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difindiss | Unicode version | ||
| Description: Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
| Ref | Expression |
|---|---|
| difindiss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3305 |
. . 3
| |
| 2 | eldif 3166 |
. . . . . . 7
| |
| 3 | eldif 3166 |
. . . . . . 7
| |
| 4 | 2, 3 | orbi12i 765 |
. . . . . 6
|
| 5 | andi 819 |
. . . . . 6
| |
| 6 | 4, 5 | bitr4i 187 |
. . . . 5
|
| 7 | pm3.14 754 |
. . . . . 6
| |
| 8 | 7 | anim2i 342 |
. . . . 5
|
| 9 | 6, 8 | sylbi 121 |
. . . 4
|
| 10 | eldif 3166 |
. . . . 5
| |
| 11 | elin 3347 |
. . . . . . 7
| |
| 12 | 11 | notbii 669 |
. . . . . 6
|
| 13 | 12 | anbi2i 457 |
. . . . 5
|
| 14 | 10, 13 | bitr2i 185 |
. . . 4
|
| 15 | 9, 14 | sylib 122 |
. . 3
|
| 16 | 1, 15 | sylbi 121 |
. 2
|
| 17 | 16 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difdif2ss 3421 indmss 3423 |
| Copyright terms: Public domain | W3C validator |