Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difindiss | Unicode version |
Description: Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
Ref | Expression |
---|---|
difindiss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3263 | . . 3 | |
2 | eldif 3125 | . . . . . . 7 | |
3 | eldif 3125 | . . . . . . 7 | |
4 | 2, 3 | orbi12i 754 | . . . . . 6 |
5 | andi 808 | . . . . . 6 | |
6 | 4, 5 | bitr4i 186 | . . . . 5 |
7 | pm3.14 743 | . . . . . 6 | |
8 | 7 | anim2i 340 | . . . . 5 |
9 | 6, 8 | sylbi 120 | . . . 4 |
10 | eldif 3125 | . . . . 5 | |
11 | elin 3305 | . . . . . . 7 | |
12 | 11 | notbii 658 | . . . . . 6 |
13 | 12 | anbi2i 453 | . . . . 5 |
14 | 10, 13 | bitr2i 184 | . . . 4 |
15 | 9, 14 | sylib 121 | . . 3 |
16 | 1, 15 | sylbi 120 | . 2 |
17 | 16 | ssriv 3146 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 698 wcel 2136 cdif 3113 cun 3114 cin 3115 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: difdif2ss 3379 indmss 3381 |
Copyright terms: Public domain | W3C validator |