| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difindiss | Unicode version | ||
| Description: Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
| Ref | Expression |
|---|---|
| difindiss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3345 |
. . 3
| |
| 2 | eldif 3206 |
. . . . . . 7
| |
| 3 | eldif 3206 |
. . . . . . 7
| |
| 4 | 2, 3 | orbi12i 769 |
. . . . . 6
|
| 5 | andi 823 |
. . . . . 6
| |
| 6 | 4, 5 | bitr4i 187 |
. . . . 5
|
| 7 | pm3.14 758 |
. . . . . 6
| |
| 8 | 7 | anim2i 342 |
. . . . 5
|
| 9 | 6, 8 | sylbi 121 |
. . . 4
|
| 10 | eldif 3206 |
. . . . 5
| |
| 11 | elin 3387 |
. . . . . . 7
| |
| 12 | 11 | notbii 672 |
. . . . . 6
|
| 13 | 12 | anbi2i 457 |
. . . . 5
|
| 14 | 10, 13 | bitr2i 185 |
. . . 4
|
| 15 | 9, 14 | sylib 122 |
. . 3
|
| 16 | 1, 15 | sylbi 121 |
. 2
|
| 17 | 16 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difdif2ss 3461 indmss 3463 |
| Copyright terms: Public domain | W3C validator |