Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difindiss | Unicode version |
Description: Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
Ref | Expression |
---|---|
difindiss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3268 | . . 3 | |
2 | eldif 3130 | . . . . . . 7 | |
3 | eldif 3130 | . . . . . . 7 | |
4 | 2, 3 | orbi12i 759 | . . . . . 6 |
5 | andi 813 | . . . . . 6 | |
6 | 4, 5 | bitr4i 186 | . . . . 5 |
7 | pm3.14 748 | . . . . . 6 | |
8 | 7 | anim2i 340 | . . . . 5 |
9 | 6, 8 | sylbi 120 | . . . 4 |
10 | eldif 3130 | . . . . 5 | |
11 | elin 3310 | . . . . . . 7 | |
12 | 11 | notbii 663 | . . . . . 6 |
13 | 12 | anbi2i 454 | . . . . 5 |
14 | 10, 13 | bitr2i 184 | . . . 4 |
15 | 9, 14 | sylib 121 | . . 3 |
16 | 1, 15 | sylbi 120 | . 2 |
17 | 16 | ssriv 3151 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 703 wcel 2141 cdif 3118 cun 3119 cin 3120 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: difdif2ss 3384 indmss 3386 |
Copyright terms: Public domain | W3C validator |