| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difdifdirss | Unicode version | ||
| Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
| Ref | Expression |
|---|---|
| difdifdirss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif32 3467 |
. . . . 5
| |
| 2 | invdif 3446 |
. . . . 5
| |
| 3 | 1, 2 | eqtr4i 2253 |
. . . 4
|
| 4 | un0 3525 |
. . . 4
| |
| 5 | 3, 4 | eqtr4i 2253 |
. . 3
|
| 6 | indi 3451 |
. . . 4
| |
| 7 | disjdif 3564 |
. . . . . 6
| |
| 8 | incom 3396 |
. . . . . 6
| |
| 9 | 7, 8 | eqtr3i 2252 |
. . . . 5
|
| 10 | 9 | uneq2i 3355 |
. . . 4
|
| 11 | 6, 10 | eqtr4i 2253 |
. . 3
|
| 12 | 5, 11 | eqtr4i 2253 |
. 2
|
| 13 | ddifss 3442 |
. . . . . 6
| |
| 14 | unss2 3375 |
. . . . . 6
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . 5
|
| 16 | indmss 3463 |
. . . . . 6
| |
| 17 | invdif 3446 |
. . . . . . 7
| |
| 18 | 17 | difeq2i 3319 |
. . . . . 6
|
| 19 | 16, 18 | sseqtri 3258 |
. . . . 5
|
| 20 | 15, 19 | sstri 3233 |
. . . 4
|
| 21 | sslin 3430 |
. . . 4
| |
| 22 | 20, 21 | ax-mp 5 |
. . 3
|
| 23 | invdif 3446 |
. . 3
| |
| 24 | 22, 23 | sseqtri 3258 |
. 2
|
| 25 | 12, 24 | eqsstri 3256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |