ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdifdirss Unicode version

Theorem difdifdirss 3363
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
difdifdirss  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdirss
StepHypRef Expression
1 dif32 3260 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3239 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2111 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3314 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2111 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3244 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3352 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3190 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2110 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3149 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2111 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2111 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddifss 3235 . . . . . 6  |-  C  C_  ( _V  \  ( _V  \  C ) )
14 unss2 3169 . . . . . 6  |-  ( C 
C_  ( _V  \ 
( _V  \  C
) )  ->  (
( _V  \  B
)  u.  C ) 
C_  ( ( _V 
\  B )  u.  ( _V  \  ( _V  \  C ) ) ) )
1513, 14ax-mp 7 . . . . 5  |-  ( ( _V  \  B )  u.  C )  C_  ( ( _V  \  B )  u.  ( _V  \  ( _V  \  C ) ) )
16 indmss 3256 . . . . . 6  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  i^i  ( _V  \  C ) ) )
17 invdif 3239 . . . . . . 7  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1817difeq2i 3113 . . . . . 6  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1916, 18sseqtri 3056 . . . . 5  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  \  C ) )
2015, 19sstri 3032 . . . 4  |-  ( ( _V  \  B )  u.  C )  C_  ( _V  \  ( B  \  C ) )
21 sslin 3224 . . . 4  |-  ( ( ( _V  \  B
)  u.  C ) 
C_  ( _V  \ 
( B  \  C
) )  ->  (
( A  \  C
)  i^i  ( ( _V  \  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) ) )
2220, 21ax-mp 7 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
23 invdif 3239 . . 3  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2422, 23sseqtri 3056 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  \  ( B  \  C ) )
2512, 24eqsstri 3054 1  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2619    \ cdif 2994    u. cun 2995    i^i cin 2996    C_ wss 2997   (/)c0 3284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator