Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difdifdirss | Unicode version |
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
difdifdirss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif32 3370 | . . . . 5 | |
2 | invdif 3349 | . . . . 5 | |
3 | 1, 2 | eqtr4i 2181 | . . . 4 |
4 | un0 3427 | . . . 4 | |
5 | 3, 4 | eqtr4i 2181 | . . 3 |
6 | indi 3354 | . . . 4 | |
7 | disjdif 3466 | . . . . . 6 | |
8 | incom 3299 | . . . . . 6 | |
9 | 7, 8 | eqtr3i 2180 | . . . . 5 |
10 | 9 | uneq2i 3258 | . . . 4 |
11 | 6, 10 | eqtr4i 2181 | . . 3 |
12 | 5, 11 | eqtr4i 2181 | . 2 |
13 | ddifss 3345 | . . . . . 6 | |
14 | unss2 3278 | . . . . . 6 | |
15 | 13, 14 | ax-mp 5 | . . . . 5 |
16 | indmss 3366 | . . . . . 6 | |
17 | invdif 3349 | . . . . . . 7 | |
18 | 17 | difeq2i 3222 | . . . . . 6 |
19 | 16, 18 | sseqtri 3162 | . . . . 5 |
20 | 15, 19 | sstri 3137 | . . . 4 |
21 | sslin 3333 | . . . 4 | |
22 | 20, 21 | ax-mp 5 | . . 3 |
23 | invdif 3349 | . . 3 | |
24 | 22, 23 | sseqtri 3162 | . 2 |
25 | 12, 24 | eqsstri 3160 | 1 |
Colors of variables: wff set class |
Syntax hints: cvv 2712 cdif 3099 cun 3100 cin 3101 wss 3102 c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |