Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difdifdirss | Unicode version |
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
difdifdirss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif32 3385 | . . . . 5 | |
2 | invdif 3364 | . . . . 5 | |
3 | 1, 2 | eqtr4i 2189 | . . . 4 |
4 | un0 3442 | . . . 4 | |
5 | 3, 4 | eqtr4i 2189 | . . 3 |
6 | indi 3369 | . . . 4 | |
7 | disjdif 3481 | . . . . . 6 | |
8 | incom 3314 | . . . . . 6 | |
9 | 7, 8 | eqtr3i 2188 | . . . . 5 |
10 | 9 | uneq2i 3273 | . . . 4 |
11 | 6, 10 | eqtr4i 2189 | . . 3 |
12 | 5, 11 | eqtr4i 2189 | . 2 |
13 | ddifss 3360 | . . . . . 6 | |
14 | unss2 3293 | . . . . . 6 | |
15 | 13, 14 | ax-mp 5 | . . . . 5 |
16 | indmss 3381 | . . . . . 6 | |
17 | invdif 3364 | . . . . . . 7 | |
18 | 17 | difeq2i 3237 | . . . . . 6 |
19 | 16, 18 | sseqtri 3176 | . . . . 5 |
20 | 15, 19 | sstri 3151 | . . . 4 |
21 | sslin 3348 | . . . 4 | |
22 | 20, 21 | ax-mp 5 | . . 3 |
23 | invdif 3364 | . . 3 | |
24 | 22, 23 | sseqtri 3176 | . 2 |
25 | 12, 24 | eqsstri 3174 | 1 |
Colors of variables: wff set class |
Syntax hints: cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |