| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difdifdirss | Unicode version | ||
| Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
| Ref | Expression |
|---|---|
| difdifdirss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif32 3427 |
. . . . 5
| |
| 2 | invdif 3406 |
. . . . 5
| |
| 3 | 1, 2 | eqtr4i 2220 |
. . . 4
|
| 4 | un0 3485 |
. . . 4
| |
| 5 | 3, 4 | eqtr4i 2220 |
. . 3
|
| 6 | indi 3411 |
. . . 4
| |
| 7 | disjdif 3524 |
. . . . . 6
| |
| 8 | incom 3356 |
. . . . . 6
| |
| 9 | 7, 8 | eqtr3i 2219 |
. . . . 5
|
| 10 | 9 | uneq2i 3315 |
. . . 4
|
| 11 | 6, 10 | eqtr4i 2220 |
. . 3
|
| 12 | 5, 11 | eqtr4i 2220 |
. 2
|
| 13 | ddifss 3402 |
. . . . . 6
| |
| 14 | unss2 3335 |
. . . . . 6
| |
| 15 | 13, 14 | ax-mp 5 |
. . . . 5
|
| 16 | indmss 3423 |
. . . . . 6
| |
| 17 | invdif 3406 |
. . . . . . 7
| |
| 18 | 17 | difeq2i 3279 |
. . . . . 6
|
| 19 | 16, 18 | sseqtri 3218 |
. . . . 5
|
| 20 | 15, 19 | sstri 3193 |
. . . 4
|
| 21 | sslin 3390 |
. . . 4
| |
| 22 | 20, 21 | ax-mp 5 |
. . 3
|
| 23 | invdif 3406 |
. . 3
| |
| 24 | 22, 23 | sseqtri 3218 |
. 2
|
| 25 | 12, 24 | eqsstri 3216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |