ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdifdirss Unicode version

Theorem difdifdirss 3493
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
difdifdirss  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdirss
StepHypRef Expression
1 dif32 3385 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3364 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2189 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3442 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2189 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3369 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3481 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3314 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2188 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3273 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2189 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2189 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddifss 3360 . . . . . 6  |-  C  C_  ( _V  \  ( _V  \  C ) )
14 unss2 3293 . . . . . 6  |-  ( C 
C_  ( _V  \ 
( _V  \  C
) )  ->  (
( _V  \  B
)  u.  C ) 
C_  ( ( _V 
\  B )  u.  ( _V  \  ( _V  \  C ) ) ) )
1513, 14ax-mp 5 . . . . 5  |-  ( ( _V  \  B )  u.  C )  C_  ( ( _V  \  B )  u.  ( _V  \  ( _V  \  C ) ) )
16 indmss 3381 . . . . . 6  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  i^i  ( _V  \  C ) ) )
17 invdif 3364 . . . . . . 7  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1817difeq2i 3237 . . . . . 6  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1916, 18sseqtri 3176 . . . . 5  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  \  C ) )
2015, 19sstri 3151 . . . 4  |-  ( ( _V  \  B )  u.  C )  C_  ( _V  \  ( B  \  C ) )
21 sslin 3348 . . . 4  |-  ( ( ( _V  \  B
)  u.  C ) 
C_  ( _V  \ 
( B  \  C
) )  ->  (
( A  \  C
)  i^i  ( ( _V  \  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) ) )
2220, 21ax-mp 5 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
23 invdif 3364 . . 3  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2422, 23sseqtri 3176 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  \  ( B  \  C ) )
2512, 24eqsstri 3174 1  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator