ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdifdirss Unicode version

Theorem difdifdirss 3507
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
difdifdirss  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdirss
StepHypRef Expression
1 dif32 3398 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3377 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2201 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3456 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2201 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3382 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3495 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3327 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2200 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3286 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2201 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2201 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddifss 3373 . . . . . 6  |-  C  C_  ( _V  \  ( _V  \  C ) )
14 unss2 3306 . . . . . 6  |-  ( C 
C_  ( _V  \ 
( _V  \  C
) )  ->  (
( _V  \  B
)  u.  C ) 
C_  ( ( _V 
\  B )  u.  ( _V  \  ( _V  \  C ) ) ) )
1513, 14ax-mp 5 . . . . 5  |-  ( ( _V  \  B )  u.  C )  C_  ( ( _V  \  B )  u.  ( _V  \  ( _V  \  C ) ) )
16 indmss 3394 . . . . . 6  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  i^i  ( _V  \  C ) ) )
17 invdif 3377 . . . . . . 7  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1817difeq2i 3250 . . . . . 6  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1916, 18sseqtri 3189 . . . . 5  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  C_  ( _V  \  ( B  \  C ) )
2015, 19sstri 3164 . . . 4  |-  ( ( _V  \  B )  u.  C )  C_  ( _V  \  ( B  \  C ) )
21 sslin 3361 . . . 4  |-  ( ( ( _V  \  B
)  u.  C ) 
C_  ( _V  \ 
( B  \  C
) )  ->  (
( A  \  C
)  i^i  ( ( _V  \  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) ) )
2220, 21ax-mp 5 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
23 invdif 3377 . . 3  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2422, 23sseqtri 3189 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  C_  ( ( A  \  C )  \  ( B  \  C ) )
2512, 24eqsstri 3187 1  |-  ( ( A  \  B ) 
\  C )  C_  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2737    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator