ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerelxr Unicode version

Theorem lerelxr 8205
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr  |-  <_  C_  ( RR*  X.  RR* )

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 8183 . 2  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
2 difss 3330 . 2  |-  ( (
RR*  X.  RR* )  \  `'  <  )  C_  ( RR*  X.  RR* )
31, 2eqsstri 3256 1  |-  <_  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    \ cdif 3194    C_ wss 3197    X. cxp 4716   `'ccnv 4717   RR*cxr 8176    < clt 8177    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-le 8183
This theorem is referenced by:  lerel  8206  cnfldstr  14516  cnfldle  14525  znval  14594  znle  14595  znbaslemnn  14597
  Copyright terms: Public domain W3C validator