ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerelxr Unicode version

Theorem lerelxr 8170
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr  |-  <_  C_  ( RR*  X.  RR* )

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 8148 . 2  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
2 difss 3307 . 2  |-  ( (
RR*  X.  RR* )  \  `'  <  )  C_  ( RR*  X.  RR* )
31, 2eqsstri 3233 1  |-  <_  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    \ cdif 3171    C_ wss 3174    X. cxp 4691   `'ccnv 4692   RR*cxr 8141    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-le 8148
This theorem is referenced by:  lerel  8171  cnfldstr  14435  cnfldle  14444  znval  14513  znle  14514  znbaslemnn  14516
  Copyright terms: Public domain W3C validator