ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerelxr Unicode version

Theorem lerelxr 7961
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr  |-  <_  C_  ( RR*  X.  RR* )

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 7939 . 2  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
2 difss 3248 . 2  |-  ( (
RR*  X.  RR* )  \  `'  <  )  C_  ( RR*  X.  RR* )
31, 2eqsstri 3174 1  |-  <_  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    \ cdif 3113    C_ wss 3116    X. cxp 4602   `'ccnv 4603   RR*cxr 7932    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-le 7939
This theorem is referenced by:  lerel  7962
  Copyright terms: Public domain W3C validator