HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-1re 8001 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7957. Proofs should use 1re 8053 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
 |-  1  e.  RR
 
Axiomax-icn 8002  _i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7958. (Contributed by NM, 1-Mar-1995.)
 |-  _i  e.  CC
 
Axiomax-addcl 8003 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7959. Proofs should normally use addcl 8032 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Axiomax-addrcl 8004 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7960. Proofs should normally use readdcl 8033 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Axiomax-mulcl 8005 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7961. Proofs should normally use mulcl 8034 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Axiomax-mulrcl 8006 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7962. Proofs should normally use remulcl 8035 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Axiomax-addcom 8007 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7965. Proofs should normally use addcom 8191 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Axiomax-mulcom 8008 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7966. Proofs should normally use mulcom 8036 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Axiomax-addass 8009 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7967. Proofs should normally use addass 8037 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Axiomax-mulass 8010 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7968. Proofs should normally use mulass 8038 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Axiomax-distr 8011 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7969. Proofs should normally use adddi 8039 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Axiomax-i2m1 8012 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7970. (Contributed by NM, 29-Jan-1995.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Axiomax-0lt1 8013 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7971. Proofs should normally use 0lt1 8181 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  0  <RR  1
 
Axiomax-1rid 8014  1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7972. (Contributed by NM, 29-Jan-1995.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Axiomax-0id 8015  0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 7973.

Proofs should normally use addrid 8192 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Axiomax-rnegex 8016* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7974. (Contributed by Eric Schmidt, 21-May-2007.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Axiomax-precex 8017* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7975. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Axiomax-cnre 8018* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7976. For naming consistency, use cnre 8050 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Axiomax-pre-ltirr 8019 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8019. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Axiomax-pre-ltwlin 8020 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7978. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Axiomax-pre-lttrn 8021 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7979. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Axiomax-pre-apti 8022 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7980. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Axiomax-pre-ltadd 8023 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7981. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Axiomax-pre-mulgt0 8024 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7982. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Axiomax-pre-mulext 8025 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, justified by Theorem axpre-mulext 7983

(Contributed by Jim Kingdon, 18-Feb-2020.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
 
Axiomax-arch 8026* Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by Theorem axarch 7986.

This axiom should not be used directly; instead use arch 9274 (which is the same, but stated in terms of 
NN and  <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
 y  +  1 )  e.  x ) } A  <RR  n )
 
Axiomax-caucvg 8027* Completeness. Axiom for real and complex numbers, justified by Theorem axcaucvg 7995.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

This axiom should not be used directly; instead use caucvgre 11211 (which is the same, but stated in terms of the  NN and  1  /  n notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Axiomax-pre-suploc 8028* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

Although this and ax-caucvg 8027 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8027.

(Contributed by Jim Kingdon, 23-Jan-2024.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
Axiomax-addf 8029 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 8032 should be used. Note that uses of ax-addf 8029 can be eliminated by using the defined operation  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) in place of  +, from which this axiom (with the defined operation in place of  +) follows as a theorem.

This axiom is justified by Theorem axaddf 7963. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

 |- 
 +  : ( CC 
 X.  CC ) --> CC
 
Axiomax-mulf 8030 Multiplication is an operation on the complex numbers. This axiom tells us that  x. is defined only on complex numbers which is analogous to the way that other operations are defined, for example see subf 8256 or eff 11893. However, while Metamath can handle this axiom, if we wish to work with weaker complex number axioms, we can avoid it by using the less specific mulcl 8034. Note that uses of ax-mulf 8030 can be eliminated by using the defined operation  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) in place of  x., as seen in mpomulf 8044.

This axiom is justified by Theorem axmulf 7964. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

 |- 
 x.  : ( CC 
 X.  CC ) --> CC
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 8031 Alias for ax-cnex 7998. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |- 
 CC  e.  _V
 
Theoremaddcl 8032 Alias for ax-addcl 8003, for naming consistency with addcli 8058. Use this theorem instead of ax-addcl 8003 or axaddcl 7959. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Theoremreaddcl 8033 Alias for ax-addrcl 8004, for naming consistency with readdcli 8067. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Theoremmulcl 8034 Alias for ax-mulcl 8005, for naming consistency with mulcli 8059. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Theoremremulcl 8035 Alias for ax-mulrcl 8006, for naming consistency with remulcli 8068. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Theoremmulcom 8036 Alias for ax-mulcom 8008, for naming consistency with mulcomi 8060. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaddass 8037 Alias for ax-addass 8009, for naming consistency with addassi 8062. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Theoremmulass 8038 Alias for ax-mulass 8010, for naming consistency with mulassi 8063. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremadddi 8039 Alias for ax-distr 8011, for naming consistency with adddii 8064. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremrecn 8040 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
 |-  ( A  e.  RR  ->  A  e.  CC )
 
Theoremreex 8041 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |- 
 RR  e.  _V
 
Theoremreelprrecn 8042 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 RR  e.  { RR ,  CC }
 
Theoremcnelprrecn 8043 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 CC  e.  { RR ,  CC }
 
Theoremmpomulf 8044* Multiplication is an operation on complex numbers. Version of ax-mulf 8030 using maps-to notation, proved from the axioms of set theory and ax-mulcl 8005. (Contributed by GG, 16-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) ) : ( CC  X.  CC ) --> CC
 
Theoremadddir 8045 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
 
Theorem0cn 8046 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
 |-  0  e.  CC
 
Theorem0cnd 8047 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ph  ->  0  e.  CC )
 
Theoremc0ex 8048 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  0  e.  _V
 
Theorem1ex 8049 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  1  e.  _V
 
Theoremcnre 8050* Alias for ax-cnre 8018, for naming consistency. (Contributed by NM, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremmulrid 8051  1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  ( A  x.  1
 )  =  A )
 
Theoremmullid 8052 Identity law for multiplication. Note: see mulrid 8051 for commuted version. (Contributed by NM, 8-Oct-1999.)
 |-  ( A  e.  CC  ->  ( 1  x.  A )  =  A )
 
Theorem1re 8053  1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
 |-  1  e.  RR
 
Theorem0re 8054  0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  0  e.  RR
 
Theorem0red 8055  0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  0  e.  RR )
 
Theoremmulridi 8056 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
 |-  A  e.  CC   =>    |-  ( A  x.  1 )  =  A
 
Theoremmullidi 8057 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
 |-  A  e.  CC   =>    |-  ( 1  x.  A )  =  A
 
Theoremaddcli 8058 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  B )  e.  CC
 
Theoremmulcli 8059 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  x.  B )  e.  CC
 
Theoremmulcomi 8060 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  x.  B )  =  ( B  x.  A )
 
Theoremmulcomli 8061 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  x.  B )  =  C   =>    |-  ( B  x.  A )  =  C
 
Theoremaddassi 8062 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  +  C )  =  ( A  +  ( B  +  C )
 )
 
Theoremmulassi 8063 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) )
 
Theoremadddii 8064 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )
 
Theoremadddiri 8065 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )
 
Theoremrecni 8066 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
 |-  A  e.  RR   =>    |-  A  e.  CC
 
Theoremreaddcli 8067 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  +  B )  e.  RR
 
Theoremremulcli 8068 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  x.  B )  e.  RR
 
Theorem1red 8069 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  RR )
 
Theorem1cnd 8070 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  CC )
 
Theoremmulridd 8071 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  1 )  =  A )
 
Theoremmullidd 8072 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 1  x.  A )  =  A )
 
Theoremmulid2d 8073 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 1  x.  A )  =  A )
 
Theoremaddcld 8074 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  B )  e.  CC )
 
Theoremmulcld 8075 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  x.  B )  e.  CC )
 
Theoremmulcomd 8076 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaddassd 8077 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  C )  =  ( A  +  ( B  +  C )
 ) )
 
Theoremmulassd 8078 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremadddid 8079 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremadddird 8080 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
 
Theoremadddirp1d 8081 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  1 )  x.  B )  =  ( ( A  x.  B )  +  B ) )
 
Theoremjoinlmuladdmuld 8082 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  (
 ( A  x.  B )  +  ( C  x.  B ) )  =  D )   =>    |-  ( ph  ->  (
 ( A  +  C )  x.  B )  =  D )
 
Theoremrecnd 8083 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremreaddcld 8084 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  +  B )  e.  RR )
 
Theoremremulcld 8085 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  x.  B )  e.  RR )
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 8086 Plus infinity.
 class +oo
 
Syntaxcmnf 8087 Minus infinity.
 class -oo
 
Syntaxcxr 8088 The set of extended reals (includes plus and minus infinity).
 class  RR*
 
Syntaxclt 8089 'Less than' predicate (extended to include the extended reals).
 class  <
 
Syntaxcle 8090 Extend wff notation to include the 'less than or equal to' relation.
 class  <_
 
Definitiondf-pnf 8091 Define plus infinity. Note that the definition is arbitrary, requiring only that +oo be a set not in  RR and different from -oo (df-mnf 8092). We use  ~P
U. CC to make it independent of the construction of  CC, and Cantor's Theorem will show that it is different from any member of 
CC and therefore  RR. See pnfnre 8096 and mnfnre 8097, and we'll also be able to prove +oo  =/= -oo.

A simpler possibility is to define +oo as  CC and -oo as  { CC }, but that approach requires the Axiom of Regularity to show that +oo and -oo are different from each other and from all members of  RR. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

 |- +oo  =  ~P U. CC
 
Definitiondf-mnf 8092 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -oo be a set not in  RR and different from +oo (see mnfnre 8097). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
 |- -oo  =  ~P +oo
 
Definitiondf-xr 8093 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
 |-  RR*  =  ( RR  u.  { +oo , -oo } )
 
Definitiondf-ltxr 8094* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers,  <RR is primitive and not necessarily a relation on  RR. (Contributed by NM, 13-Oct-2005.)
 |- 
 <  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR 
 u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) )
 
Definitiondf-le 8095 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
 |- 
 <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
 
Theorempnfnre 8096 Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
 |- +oo  e/  RR
 
Theoremmnfnre 8097 Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
 |- -oo  e/  RR
 
Theoremressxr 8098 The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
 |- 
 RR  C_  RR*
 
Theoremrexpssxrxp 8099 The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
 
Theoremrexr 8100 A standard real is an extended real. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  A  e.  RR* )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15887
  Copyright terms: Public domain < Previous  Next >