![]() |
Intuitionistic Logic Explorer Theorem List (p. 81 of 157) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulcl 8001 | Alias for ax-mulcl 7972, for naming consistency with mulcli 8026. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcl 8002 | Alias for ax-mulrcl 7973, for naming consistency with remulcli 8035. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcom 8003 | Alias for ax-mulcom 7975, for naming consistency with mulcomi 8027. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addass 8004 | Alias for ax-addass 7976, for naming consistency with addassi 8029. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulass 8005 | Alias for ax-mulass 7977, for naming consistency with mulassi 8030. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddi 8006 | Alias for ax-distr 7978, for naming consistency with adddii 8031. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recn 8007 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | reex 8008 | The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | reelprrecn 8009 | Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cnelprrecn 8010 | Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpomulf 8011* | Multiplication is an operation on complex numbers. Version of ax-mulf 7997 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7972. (Contributed by GG, 16-Mar-2025.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddir 8012 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0cn 8013 | 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | 0cnd 8014 | 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | c0ex 8015 | 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
![]() ![]() ![]() ![]() | ||
Theorem | 1ex 8016 | 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
![]() ![]() ![]() ![]() | ||
Theorem | cnre 8017* | Alias for ax-cnre 7985, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulrid 8018 |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullid 8019 | Identity law for multiplication. Note: see mulrid 8018 for commuted version. (Contributed by NM, 8-Oct-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1re 8020 |
![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 0re 8021 |
![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 0red 8022 |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulid1i 8023 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullidi 8024 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addcli 8025 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcli 8026 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomi 8027 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomli 8028 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addassi 8029 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulassi 8030 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddii 8031 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddiri 8032 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recni 8033 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | readdcli 8034 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcli 8035 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1red 8036 | 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1cnd 8037 | 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulridd 8038 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullidd 8039 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulid2d 8040 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addcld 8041 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcld 8042 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomd 8043 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addassd 8044 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulassd 8045 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddid 8046 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddird 8047 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddirp1d 8048 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | joinlmuladdmuld 8049 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recnd 8050 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | readdcld 8051 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcld 8052 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | cpnf 8053 | Plus infinity. |
![]() ![]() | ||
Syntax | cmnf 8054 | Minus infinity. |
![]() ![]() | ||
Syntax | cxr 8055 | The set of extended reals (includes plus and minus infinity). |
![]() ![]() | ||
Syntax | clt 8056 | 'Less than' predicate (extended to include the extended reals). |
![]() ![]() | ||
Syntax | cle 8057 | Extend wff notation to include the 'less than or equal to' relation. |
![]() ![]() | ||
Definition | df-pnf 8058 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
A simpler possibility is to define |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-mnf 8059 |
Define minus infinity as the power set of plus infinity. Note that the
definition is arbitrary, requiring only that ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Definition | df-xr 8060 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-ltxr 8061* |
Define 'less than' on the set of extended reals. Definition 12-3.1 of
[Gleason] p. 173. Note that in our
postulates for complex numbers,
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-le 8062 | Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pnfnre 8063 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | mnfnre 8064 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | ressxr 8065 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | rexpssxrxp 8066 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rexr 8067 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0xr 8068 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | renepnf 8069 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | renemnf 8070 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rexrd 8071 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | renepnfd 8072 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | renemnfd 8073 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pnfxr 8074 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
![]() ![]() ![]() ![]() | ||
Theorem | pnfex 8075 | Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | pnfnemnf 8076 |
Plus and minus infinity are different elements of ![]() |
![]() ![]() ![]() ![]() | ||
Theorem | mnfnepnf 8077 | Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | mnfxr 8078 | Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
![]() ![]() ![]() ![]() | ||
Theorem | rexri 8079 | A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1xr 8080 |
![]() |
![]() ![]() ![]() ![]() | ||
Theorem | renfdisj 8081 | The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltrelxr 8082 | 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltrel 8083 | 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
![]() ![]() ![]() | ||
Theorem | lerelxr 8084 | 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lerel 8085 | 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
![]() ![]() ![]() | ||
Theorem | xrlenlt 8086 | 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltxrlt 8087 |
The standard less-than ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axltirr 8088 | Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7986 with ordering on the extended reals. New proofs should use ltnr 8098 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axltwlin 8089 | Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7987 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axlttrn 8090 | Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 7988 with ordering on the extended reals. New proofs should use lttr 8095 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axltadd 8091 | Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7990 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axapti 8092 | Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7989 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axmulgt0 8093 | The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7991 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axsuploc 8094* | An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7995 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lttr 8095 | Alias for axlttrn 8090, for naming consistency with lttri 8126. New proofs should generally use this instead of ax-pre-lttrn 7988. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulgt0 8096 | The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lenlt 8097 | 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltnr 8098 | 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltso 8099 | 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
![]() ![]() ![]() ![]() | ||
Theorem | gtso 8100 | 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |