Theorem List for Intuitionistic Logic Explorer - 8001-8100 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | axltadd 8001 |
Ordering property of addition on reals. Axiom for real and complex
numbers, derived from set theory. (This restates ax-pre-ltadd 7902 with
ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | axapti 8002 |
Apartness of reals is tight. Axiom for real and complex numbers, derived
from set theory. (This restates ax-pre-apti 7901 with ordering on the
extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif)
![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | axmulgt0 8003 |
The product of two positive reals is positive. Axiom for real and complex
numbers, derived from set theory. (This restates ax-pre-mulgt0 7903 with
ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | axsuploc 8004* |
An inhabited, bounded-above, located set of reals has a supremum. Axiom
for real and complex numbers, derived from ZF set theory. (This
restates ax-pre-suploc 7907 with ordering on the extended reals.)
(Contributed by Jim Kingdon, 30-Jan-2024.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![E. E.](exists.gif)
![A A](_ca.gif) ![( (](lp.gif) ![E. E.](exists.gif) ![A. A.](forall.gif) ![A. A.](forall.gif)
![A. A.](forall.gif) ![( (](lp.gif)
![( (](lp.gif) ![E. E.](exists.gif)
![A. A.](forall.gif) ![y y](_y.gif) ![)
)](rp.gif) ![) )](rp.gif) ![) )](rp.gif) ![E. E.](exists.gif) ![( (](lp.gif) ![A. A.](forall.gif)
![A. A.](forall.gif) ![( (](lp.gif)
![E. E.](exists.gif) ![z z](_z.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
4.2.4 Ordering on reals
|
|
Theorem | lttr 8005 |
Alias for axlttrn 8000, for naming consistency with lttri 8036. New proofs
should generally use this instead of ax-pre-lttrn 7900. (Contributed by NM,
10-Mar-2008.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mulgt0 8006 |
The product of two positive numbers is positive. (Contributed by NM,
10-Mar-2008.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![( (](lp.gif)
![B B](_cb.gif) ![) )](rp.gif)
![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | lenlt 8007 |
'Less than or equal to' expressed in terms of 'less than'. Part of
definition 11.2.7(vi) of [HoTT], p.
(varies). (Contributed by NM,
13-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltnr 8008 |
'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
|
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ltso 8009 |
'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
|
![RR RR](bbr.gif) |
|
Theorem | gtso 8010 |
'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
|
![RR RR](bbr.gif) |
|
Theorem | lttri3 8011 |
Tightness of real apartness. (Contributed by NM, 5-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | letri3 8012 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![)
)](rp.gif) ![) )](rp.gif) |
|
Theorem | ltleletr 8013 |
Transitive law, weaker form of ![( (](lp.gif)
![C C](_cc.gif) .
(Contributed by AV, 14-Oct-2018.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | letr 8014 |
Transitive law. (Contributed by NM, 12-Nov-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | leid 8015 |
'Less than or equal to' is reflexive. (Contributed by NM,
18-Aug-1999.)
|
![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ltne 8016 |
'Less than' implies not equal. See also ltap 8564
which is the same but for
apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro,
16-Sep-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ltnsym 8017 |
'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | eqlelt 8018 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltle 8019 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
25-Aug-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif)
![B B](_cb.gif) ![) )](rp.gif) ![)
)](rp.gif) |
|
Theorem | lelttr 8020 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 23-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltletr 8021 |
Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 25-Aug-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltnsym2 8022 |
'Less than' is antisymmetric and irreflexive. (Contributed by NM,
13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif)
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | eqle 8023 |
Equality implies 'less than or equal to'. (Contributed by NM,
4-Apr-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ltnri 8024 |
'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
|
![A A](_ca.gif) |
|
Theorem | eqlei 8025 |
Equality implies 'less than or equal to'. (Contributed by NM,
23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
|
![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | eqlei2 8026 |
Equality implies 'less than or equal to'. (Contributed by Alexander van
der Vekens, 20-Mar-2018.)
|
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | gtneii 8027 |
'Less than' implies not equal. See also gtapii 8565 which is the same
for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
|
![A A](_ca.gif) |
|
Theorem | ltneii 8028 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
16-Sep-2015.)
|
![B B](_cb.gif) |
|
Theorem | lttri3i 8029 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | letri3i 8030 |
Tightness of real apartness. (Contributed by NM, 14-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltnsymi 8031 |
'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
|
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | lenlti 8032 |
'Less than or equal to' in terms of 'less than'. (Contributed by NM,
24-May-1999.)
|
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ltlei 8033 |
'Less than' implies 'less than or equal to'. (Contributed by NM,
14-May-1999.)
|
![( (](lp.gif)
![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ltleii 8034 |
'Less than' implies 'less than or equal to' (inference). (Contributed
by NM, 22-Aug-1999.)
|
![B B](_cb.gif) |
|
Theorem | ltnei 8035 |
'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
|
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | lttri 8036 |
'Less than' is transitive. Theorem I.17 of [Apostol] p. 20.
(Contributed by NM, 14-May-1999.)
|
![( (](lp.gif) ![(
(](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | lelttri 8037 |
'Less than or equal to', 'less than' transitive law. (Contributed by
NM, 14-May-1999.)
|
![( (](lp.gif) ![(
(](lp.gif) ![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | ltletri 8038 |
'Less than', 'less than or equal to' transitive law. (Contributed by
NM, 14-May-1999.)
|
![( (](lp.gif) ![(
(](lp.gif)
![C C](_cc.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | letri 8039 |
'Less than or equal to' is transitive. (Contributed by NM,
14-May-1999.)
|
![( (](lp.gif) ![(
(](lp.gif)
![C C](_cc.gif)
![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | le2tri3i 8040 |
Extended trichotomy law for 'less than or equal to'. (Contributed by
NM, 14-Aug-2000.)
|
![( (](lp.gif) ![(
(](lp.gif)
![A A](_ca.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mulgt0i 8041 |
The product of two positive numbers is positive. (Contributed by NM,
16-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mulgt0ii 8042 |
The product of two positive numbers is positive. (Contributed by NM,
18-May-1999.)
|
![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ltnrd 8043 |
'Less than' is irreflexive. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | gtned 8044 |
'Less than' implies not equal. See also gtapd 8568 which is the same but
for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ltned 8045 |
'Greater than' implies not equal. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | lttri3d 8046 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | letri3d 8047 |
Tightness of real apartness. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | eqleltd 8048 |
Equality in terms of 'less than or equal to', 'less than'. (Contributed
by NM, 7-Apr-2001.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | lenltd 8049 |
'Less than or equal to' in terms of 'less than'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ltled 8050 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ltnsymd 8051 |
'Less than' implies 'less than or equal to'. (Contributed by Mario
Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | nltled 8052 |
'Not less than ' implies 'less than or equal to'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif)
![A A](_ca.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | lensymd 8053 |
'Less than or equal to' implies 'not less than'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | mulgt0d 8054 |
The product of two positive numbers is positive. (Contributed by
Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![A A](_ca.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | letrd 8055 |
Transitive law deduction for 'less than or equal to'. (Contributed by
NM, 20-May-2005.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | lelttrd 8056 |
Transitive law deduction for 'less than or equal to', 'less than'.
(Contributed by NM, 8-Jan-2006.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | lttrd 8057 |
Transitive law deduction for 'less than'. (Contributed by NM,
9-Jan-2006.)
|
![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | 0lt1 8058 |
0 is less than 1. Theorem I.21 of [Apostol] p.
20. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 17-Jan-1997.)
|
![1 1](1.gif) |
|
Theorem | ltntri 8059 |
Negative trichotomy property for real numbers. It is well known that we
cannot prove real number trichotomy,
. Does
that mean there is a pair of real numbers where none of those hold (that
is, where we can refute each of those three relationships)? Actually, no,
as shown here. This is another example of distinguishing between being
unable to prove something, or being able to refute it. (Contributed by
Jim Kingdon, 13-Aug-2023.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif)
![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
4.2.5 Initial properties of the complex
numbers
|
|
Theorem | mul12 8060 |
Commutative/associative law for multiplication. (Contributed by NM,
30-Apr-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul32 8061 |
Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif)
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul31 8062 |
Commutative/associative law. (Contributed by Scott Fenton,
3-Jan-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif)
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul4 8063 |
Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif)
![CC CC](bbc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | muladd11 8064 |
A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif)
![( (](lp.gif) ![(
(](lp.gif) ![A A](_ca.gif)
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | 1p1times 8065 |
Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario
Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![1 1](1.gif) ![A A](_ca.gif)
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | peano2cn 8066 |
A theorem for complex numbers analogous the second Peano postulate
peano2 4588. (Contributed by NM, 17-Aug-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![1 1](1.gif) ![CC CC](bbc.gif) ![) )](rp.gif) |
|
Theorem | peano2re 8067 |
A theorem for reals analogous the second Peano postulate peano2 4588.
(Contributed by NM, 5-Jul-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![1 1](1.gif) ![RR RR](bbr.gif) ![) )](rp.gif) |
|
Theorem | addcom 8068 |
Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![A A](_ca.gif) ![) )](rp.gif) ![)
)](rp.gif) |
|
Theorem | addid1 8069 |
is an additive identity.
(Contributed by Jim Kingdon,
16-Jan-2020.)
|
![( (](lp.gif) ![( (](lp.gif) ![0 0](0.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | addid2 8070 |
is a left identity for
addition. (Contributed by Scott Fenton,
3-Jan-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif)
![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | readdcan 8071 |
Cancellation law for addition over the reals. (Contributed by Scott
Fenton, 3-Jan-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![RR RR](bbr.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif)
![( (](lp.gif)
![B B](_cb.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | 00id 8072 |
is its own additive
identity. (Contributed by Scott Fenton,
3-Jan-2013.)
|
![( (](lp.gif) ![0 0](0.gif) ![0 0](0.gif) |
|
Theorem | addid1i 8073 |
is an additive identity.
(Contributed by NM, 23-Nov-1994.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
![( (](lp.gif) ![0 0](0.gif)
![A A](_ca.gif) |
|
Theorem | addid2i 8074 |
is a left identity for
addition. (Contributed by NM,
3-Jan-2013.)
|
![( (](lp.gif) ![A A](_ca.gif) ![A A](_ca.gif) |
|
Theorem | addcomi 8075 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.)
|
![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | addcomli 8076 |
Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![A A](_ca.gif) ![C C](_cc.gif) |
|
Theorem | mul12i 8077 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew
Salmon, 19-Nov-2011.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul32i 8078 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999.)
|
![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | mul4i 8079 |
Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | addid1d 8080 |
is an additive identity.
(Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif)
![0 0](0.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | addid2d 8081 |
is a left identity for
addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | addcomd 8082 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul12d 8083 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul32d 8084 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul31d 8085 |
Commutative/associative law. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mul4d 8086 |
Rearrangement of 4 factors. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | muladd11r 8087 |
A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![1 1](1.gif) ![( (](lp.gif) ![1 1](1.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![B B](_cb.gif) ![) )](rp.gif) ![1 1](1.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | comraddd 8088 |
Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
4.3 Real and complex numbers - basic
operations
|
|
4.3.1 Addition
|
|
Theorem | add12 8089 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 11-May-2004.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add32 8090 |
Commutative/associative law that swaps the last two terms in a triple sum.
(Contributed by NM, 13-Nov-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif)
![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add32r 8091 |
Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman,
18-May-2007.)
|
![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add4 8092 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif)
![CC CC](bbc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add42 8093 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif)
![CC CC](bbc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add12i 8094 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
![( (](lp.gif)
![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![)
)](rp.gif) |
|
Theorem | add32i 8095 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | add4i 8096 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add42i 8097 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add12d 8098 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif)
![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![)
)](rp.gif) ![) )](rp.gif) |
|
Theorem | add32d 8099 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | add4d 8100 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![CC CC](bbc.gif) ![( (](lp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![B B](_cb.gif)
![( (](lp.gif) ![D D](_cd.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![)
)](rp.gif) ![) )](rp.gif) |