Home Intuitionistic Logic ExplorerTheorem List (p. 81 of 116) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremsubled 8001 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremlesubd 8002 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltsub23d 8003 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltsub13d 8004 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremlesub1d 8005 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremlesub2d 8006 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltsub1d 8007 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltsub2d 8008 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltadd1dd 8009 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremltsub1dd 8010 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremltsub2dd 8011 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremleadd1dd 8012 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremleadd2dd 8013 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremlesub1dd 8014 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremlesub2dd 8015 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)

Theoremle2addd 8016 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremle2subd 8017 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremltleaddd 8018 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremleltaddd 8019 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremlt2addd 8020 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremlt2subd 8021 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)

Theorempossumd 8022 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)

Theoremsublt0d 8023 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)

Theoremltaddsublt 8024 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)

Theorem1le1 8025 . Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)

Theoremgt0add 8026 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)

3.3.5  Real Apartness

Syntaxcreap 8027 Class of real apartness relation.
#

Definitiondf-reap 8028* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 8035 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 8040). (Contributed by Jim Kingdon, 26-Jan-2020.)
#

Theoremreapval 8029 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8041 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
#

Theoremreapirr 8030 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8058 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
#

Theoremrecexre 8031* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
#

Theoremreapti 8032 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8075. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
#

Theoremrecexgt0 8033* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)

3.3.6  Complex Apartness

Syntaxcap 8034 Class of complex apartness relation.
#

Definitiondf-ap 8035* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8120 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8058), symmetry (apsym 8059), and cotransitivity (apcotr 8060). Apartness implies negated equality, as seen at apne 8076, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8075).

(Contributed by Jim Kingdon, 26-Jan-2020.)

# # #

Theoremixi 8036 times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)

Theoreminelr 8037 The imaginary unit is not a real number. (Contributed by NM, 6-May-1999.)

Theoremrimul 8038 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)

Theoremrereim 8039 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)

Theoremapreap 8040 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
# #

Theoremreaplt 8041 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
#

Theoremreapltxor 8042 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
#

Theorem1ap0 8043 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
#

Theoremltmul1a 8044 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)

Theoremltmul1 8045 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)

Theoremlemul1 8046 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)

Theoremreapmul1lem 8047 Lemma for reapmul1 8048. (Contributed by Jim Kingdon, 8-Feb-2020.)
# #

Theoremreapmul1 8048 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8229. (Contributed by Jim Kingdon, 8-Feb-2020.)
# # #

# #

Theoremreapneg 8050 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
# #

Theoremreapcotr 8051 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
# # #

Theoremremulext1 8052 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
# #

Theoremremulext2 8053 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
# #

Theoremapsqgt0 8054 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
#

Theoremcru 8055 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)

Theoremapreim 8056 Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
# # #

Theoremmulreim 8057 Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)

Theoremapirr 8058 Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
#

Theoremapsym 8059 Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
# #

Theoremapcotr 8060 Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
# # #

# #

# #

Theoremaddext 8063 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5643. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
# # #

Theoremapneg 8064 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
# #

Theoremmulext1 8065 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
# #

Theoremmulext2 8066 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
# #

Theoremmulext 8067 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5643. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
# # #

Theoremmulap0r 8068 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
# # #

Theoremmsqge0 8069 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)

Theoremmsqge0i 8070 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)

Theoremmsqge0d 8071 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremmulge0 8072 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)

Theoremmulge0i 8073 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)

Theoremmulge0d 8074 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)

Theoremapti 8075 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
#

Theoremapne 8076 Apartness implies negated equality. We cannot in general prove the converse, which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
#

Theoremleltap 8077 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
#

Theoremgt0ap0 8078 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
#

Theoremgt0ap0i 8079 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
#

Theoremgt0ap0ii 8080 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
#

Theoremgt0ap0d 8081 Positive implies apart from zero. Because of the way we define #, must be an element of , not just . (Contributed by Jim Kingdon, 27-Feb-2020.)
#

Theoremnegap0 8082 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
# #

Theoremltleap 8083 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
#

Theoremltap 8084 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremgtapii 8085 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremltapii 8086 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremltapi 8087 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremgtapd 8088 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremltapd 8089 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
#

Theoremleltapd 8090 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
#

Theoremap0gt0 8091 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
#

Theoremap0gt0d 8092 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
#

Theoremsubap0d 8093 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
#        #

3.3.7  Reciprocals

Theoremrecextlem1 8094 Lemma for recexap 8096. (Contributed by Eric Schmidt, 23-May-2007.)

Theoremrecexaplem2 8095 Lemma for recexap 8096. (Contributed by Jim Kingdon, 20-Feb-2020.)
# #

Theoremrecexap 8096* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
#

Theoremmulap0 8097 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
# # #

Theoremmulap0b 8098 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
# # #

Theoremmulap0i 8099 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
#        #        #

Theoremmulap0bd 8100 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
# # #

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11584
 Copyright terms: Public domain < Previous  Next >