HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddsubeq4 8001 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theorempncan3oi 8002 Subtraction and addition of equals. Almost but not exactly the same as pncan3i 8063 and pncan 7992, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 8098. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  +  B )  -  B )  =  A
 
Theoremmvrraddi 8003 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  B  e.  CC   &    |-  C  e.  CC   &    |-  A  =  ( B  +  C )   =>    |-  ( A  -  C )  =  B
 
Theoremmvlladdi 8004 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  +  B )  =  C   =>    |-  B  =  ( C  -  A )
 
Theoremsubid 8005 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
 
Theoremsubid1 8006 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  0
 )  =  A )
 
Theoremnpncan 8007 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  C ) )  =  ( A  -  C ) )
 
Theoremnppcan 8008 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  +  C )  +  B )  =  ( A  +  C ) )
 
Theoremnnpcan 8009 Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  -  C )  +  B )  =  ( A  -  C ) )
 
Theoremnppcan3 8010 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  +  B )
 )  =  ( A  +  C ) )
 
Theoremsubcan2 8011 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubeq0 8012 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <->  A  =  B ) )
 
Theoremnpncan2 8013 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  A ) )  =  0
 )
 
Theoremsubsub2 8014 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
 
Theoremnncan 8015 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  B )
 
Theoremsubsub 8016 Law for double subtraction. (Contributed by NM, 13-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C ) )
 
Theoremnppcan2 8017 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) )
 
Theoremsubsub3 8018 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  +  C )  -  B ) )
 
Theoremsubsub4 8019 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( A  -  ( B  +  C ) ) )
 
Theoremsub32 8020 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( ( A  -  C )  -  B ) )
 
Theoremnnncan 8021 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  -  C )  =  ( A  -  B ) )
 
Theoremnnncan1 8022 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  ( A  -  C ) )  =  ( C  -  B ) )
 
Theoremnnncan2 8023 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3 8024 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcan 8025 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  +  C )
 )  =  ( B  -  C ) )
 
Theorempnpcan2 8026 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  C )  -  ( B  +  C )
 )  =  ( A  -  B ) )
 
Theorempnncan 8027 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C ) )
 
Theoremppncan 8028 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  ( C  -  B ) )  =  ( A  +  C ) )
 
Theoremaddsub4 8029 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) ) )
 
Theoremsubadd4 8030 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  +  D )  -  ( B  +  C ) ) )
 
Theoremsub4 8031 Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  -  C )  -  ( B  -  D ) ) )
 
Theoremneg0 8032 Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
 |-  -u 0  =  0
 
Theoremnegid 8033 Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
 |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
 
Theoremnegsub 8034 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
 
Theoremsubneg 8035 Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B )  =  ( A  +  B ) )
 
Theoremnegneg 8036 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  -> 
 -u -u A  =  A )
 
Theoremneg11 8037 Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  -u B  <->  A  =  B ) )
 
Theoremnegcon1 8038 Negative contraposition law. (Contributed by NM, 9-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
 
Theoremnegcon2 8039 Negative contraposition law. (Contributed by NM, 14-Nov-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  -u B  <->  B  =  -u A ) )
 
Theoremnegeq0 8040 A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  =  0  <->  -u A  =  0 ) )
 
Theoremsubcan 8041 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  ( A  -  C )  <->  B  =  C ) )
 
Theoremnegsubdi 8042 Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( -u A  +  B ) )
 
Theoremnegdi 8043 Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  +  -u B ) )
 
Theoremnegdi2 8044 Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  -  B ) )
 
Theoremnegsubdi2 8045 Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( B  -  A ) )
 
Theoremneg2sub 8046 Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
 
Theoremrenegcl 8047 Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
 |-  ( A  e.  RR  -> 
 -u A  e.  RR )
 
Theoremrenegcli 8048 Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 8047 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  RR   =>    |-  -u A  e.  RR
 
Theoremresubcli 8049 Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  -  B )  e.  RR
 
Theoremresubcl 8050 Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B )  e.  RR )
 
Theoremnegreb 8051 The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( -u A  e.  RR  <->  A  e.  RR ) )
 
Theorempeano2cnm 8052 "Reverse" second Peano postulate analog for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |-  ( N  e.  CC  ->  ( N  -  1
 )  e.  CC )
 
Theorempeano2rem 8053 "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( N  e.  RR  ->  ( N  -  1
 )  e.  RR )
 
Theoremnegcli 8054 Closure law for negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  -u A  e.  CC
 
Theoremnegidi 8055 Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  +  -u A )  =  0
 
Theoremnegnegi 8056 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   =>    |-  -u -u A  =  A
 
Theoremsubidi 8057 Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  -  A )  =  0
 
Theoremsubid1i 8058 Identity law for subtraction. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  -  0 )  =  A
 
Theoremnegne0bi 8059 A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( A  =/=  0 
 <->  -u A  =/=  0
 )
 
Theoremnegrebi 8060 The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( -u A  e.  RR  <->  A  e.  RR )
 
Theoremnegne0i 8061 The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.)
 |-  A  e.  CC   &    |-  A  =/=  0   =>    |-  -u A  =/=  0
 
Theoremsubcli 8062 Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  B )  e.  CC
 
Theorempncan3i 8063 Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  ( B  -  A ) )  =  B
 
Theoremnegsubi 8064 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  -u B )  =  ( A  -  B )
 
Theoremsubnegi 8065 Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  -u B )  =  ( A  +  B )
 
Theoremsubeq0i 8066 If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  -  B )  =  0  <->  A  =  B )
 
Theoremneg11i 8067 Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  -u B 
 <->  A  =  B )
 
Theoremnegcon1i 8068 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  B  <->  -u B  =  A )
 
Theoremnegcon2i 8069 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  =  -u B 
 <->  B  =  -u A )
 
Theoremnegdii 8070 Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  +  B )  =  ( -u A  +  -u B )
 
Theoremnegsubdii 8071 Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( -u A  +  B )
 
Theoremnegsubdi2i 8072 Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( B  -  A )
 
Theoremsubaddi 8073 Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( B  +  C )  =  A )
 
Theoremsubadd2i 8074 Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( C  +  B )  =  A )
 
Theoremsubaddrii 8075 Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  ( B  +  C )  =  A   =>    |-  ( A  -  B )  =  C
 
Theoremsubsub23i 8076 Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( A  -  C )  =  B )
 
Theoremaddsubassi 8077 Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) )
 
Theoremaddsubi 8078 Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B )
 
Theoremsubcani 8079 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  ( A  -  C )  <->  B  =  C )
 
Theoremsubcan2i 8080 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  C )  =  ( B  -  C )  <->  A  =  B )
 
Theorempnncani 8081 Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C )
 
Theoremaddsub4i 8082 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) )
 
Theorem0reALT 8083 Alternate proof of 0re 7790. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  0  e.  RR
 
Theoremnegcld 8084 Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  -u A  e.  CC )
 
Theoremsubidd 8085 Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  A )  =  0 )
 
Theoremsubid1d 8086 Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  0 )  =  A )
 
Theoremnegidd 8087 Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  -u A )  =  0 )
 
Theoremnegnegd 8088 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  -u -u A  =  A )
 
Theoremnegeq0d 8089 A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  =  0  <->  -u A  =  0 ) )
 
Theoremnegne0bd 8090 A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  =/=  0  <->  -u A  =/=  0
 ) )
 
Theoremnegcon1d 8091 Contraposition law for unary minus. Deduction form of negcon1 8038. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  =  B  <->  -u B  =  A )
 )
 
Theoremnegcon1ad 8092 Contraposition law for unary minus. One-way deduction form of negcon1 8038. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  -u A  =  B )   =>    |-  ( ph  ->  -u B  =  A )
 
Theoremneg11ad 8093 The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 8037. Generalization of neg11d 8109. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  =  -u B 
 <->  A  =  B ) )
 
Theoremnegned 8094 If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 8109. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  -u A  =/=  -u B )
 
Theoremnegne0d 8095 The negative of a nonzero number is nonzero. See also negap0d 8417 which is similar but for apart from zero rather than not equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  -u A  =/=  0 )
 
Theoremnegrebd 8096 The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  -u A  e.  RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremsubcld 8097 Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  -  B )  e.  CC )
 
Theorempncand 8098 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  B )  -  B )  =  A )
 
Theorempncan2d 8099 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  B )  -  A )  =  B )
 
Theorempncan3d 8100 Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >