HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 144)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxltadd 8001 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7902 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B ) ) )
 
Theoremaxapti 8002 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7901 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
 
Theoremaxmulgt0 8003 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7903 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <  A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
 
Theoremaxsuploc 8004* An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7907 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) ) ) 
 ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
4.2.4  Ordering on reals
 
Theoremlttr 8005 Alias for axlttrn 8000, for naming consistency with lttri 8036. New proofs should generally use this instead of ax-pre-lttrn 7900. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <  C )  ->  A  <  C ) )
 
Theoremmulgt0 8006 The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
 0  <  ( A  x.  B ) )
 
Theoremlenlt 8007 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
 
Theoremltnr 8008 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  RR  ->  -.  A  <  A )
 
Theoremltso 8009 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
 |- 
 <  Or  RR
 
Theoremgtso 8010 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
 |-  `'  <  Or  RR
 
Theoremlttri3 8011 Tightness of real apartness. (Contributed by NM, 5-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( -.  A  <  B 
 /\  -.  B  <  A ) ) )
 
Theoremletri3 8012 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( A  <_  B  /\  B  <_  A )
 ) )
 
Theoremltleletr 8013 Transitive law, weaker form of  ( A  <  B  /\  B  <_  C )  ->  A  <  C. (Contributed by AV, 14-Oct-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <_  C )  ->  A  <_  C ) )
 
Theoremletr 8014 Transitive law. (Contributed by NM, 12-Nov-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <_  B 
 /\  B  <_  C )  ->  A  <_  C ) )
 
Theoremleid 8015 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  RR  ->  A  <_  A )
 
Theoremltne 8016 'Less than' implies not equal. See also ltap 8564 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
 |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
 
Theoremltnsym 8017 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  -.  B  <  A ) )
 
Theoremeqlelt 8018 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( A  <_  B  /\  -.  A  <  B ) ) )
 
Theoremltle 8019 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  A  <_  B )
 )
 
Theoremlelttr 8020 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <_  B 
 /\  B  <  C )  ->  A  <  C ) )
 
Theoremltletr 8021 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <_  C )  ->  A  <  C ) )
 
Theoremltnsym2 8022 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( A  <  B  /\  B  <  A ) )
 
Theoremeqle 8023 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
 |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
 
Theoremltnri 8024 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
 |-  A  e.  RR   =>    |-  -.  A  <  A
 
Theoremeqlei 8025 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
 |-  A  e.  RR   =>    |-  ( A  =  B  ->  A  <_  B )
 
Theoremeqlei2 8026 Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
 |-  A  e.  RR   =>    |-  ( B  =  A  ->  B  <_  A )
 
Theoremgtneii 8027 'Less than' implies not equal. See also gtapii 8565 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
 |-  A  e.  RR   &    |-  A  <  B   =>    |-  B  =/=  A
 
Theoremltneii 8028 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
 |-  A  e.  RR   &    |-  A  <  B   =>    |-  A  =/=  B
 
Theoremlttri3i 8029 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) )
 
Theoremletri3i 8030 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) )
 
Theoremltnsymi 8031 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <  B  ->  -.  B  <  A )
 
Theoremlenlti 8032 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <_  B  <->  -.  B  <  A )
 
Theoremltlei 8033 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <  B  ->  A  <_  B )
 
Theoremltleii 8034 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  A  <  B   =>    |-  A  <_  B
 
Theoremltnei 8035 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <  B  ->  B  =/=  A )
 
Theoremlttri 8036 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  <  B  /\  B  <  C ) 
 ->  A  <  C )
 
Theoremlelttri 8037 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  <_  B  /\  B  <  C ) 
 ->  A  <  C )
 
Theoremltletri 8038 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  <  B  /\  B  <_  C )  ->  A  <  C )
 
Theoremletri 8039 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
 
Theoremle2tri3i 8040 Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  <_  B  /\  B  <_  C  /\  C  <_  A )  <->  ( A  =  B  /\  B  =  C  /\  C  =  A ) )
 
Theoremmulgt0i 8041 The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  0  <  ( A  x.  B ) )
 
Theoremmulgt0ii 8042 The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  A   &    |-  0  <  B   =>    |-  0  <  ( A  x.  B )
 
Theoremltnrd 8043 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  -.  A  <  A )
 
Theoremgtned 8044 'Less than' implies not equal. See also gtapd 8568 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  B  =/=  A )
 
Theoremltned 8045 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremlttri3d 8046 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
 
Theoremletri3d 8047 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  =  B  <->  ( A  <_  B 
 /\  B  <_  A ) ) )
 
Theoremeqleltd 8048 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  =  B  <->  ( A  <_  B 
 /\  -.  A  <  B ) ) )
 
Theoremlenltd 8049 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
 
Theoremltled 8050 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremltnsymd 8051 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  -.  B  <  A )
 
Theoremnltled 8052 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -.  B  <  A )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremlensymd 8053 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  -.  B  <  A )
 
Theoremmulgt0d 8054 The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  x.  B ) )
 
Theoremletrd 8055 Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  A  <_  C )
 
Theoremlelttrd 8056 Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremlttrd 8057 Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theorem0lt1 8058 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.)
 |-  0  <  1
 
Theoremltntri 8059 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy,  A  <  B  \/  A  =  B  \/  B  <  A. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )
 
4.2.5  Initial properties of the complex numbers
 
Theoremmul12 8060 Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C ) ) )
 
Theoremmul32 8061 Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B ) )
 
Theoremmul31 8062 Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( ( C  x.  B )  x.  A ) )
 
Theoremmul4 8063 Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
 
Theoremmuladd11 8064 A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  ( 1  +  B ) )  =  (
 ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) ) )
 
Theorem1p1times 8065 Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( ( 1  +  1 )  x.  A )  =  ( A  +  A ) )
 
Theorempeano2cn 8066 A theorem for complex numbers analogous the second Peano postulate peano2 4588. (Contributed by NM, 17-Aug-2005.)
 |-  ( A  e.  CC  ->  ( A  +  1 )  e.  CC )
 
Theorempeano2re 8067 A theorem for reals analogous the second Peano postulate peano2 4588. (Contributed by NM, 5-Jul-2005.)
 |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
 
Theoremaddcom 8068 Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Theoremaddid1 8069  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Theoremaddid2 8070  0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  ( 0  +  A )  =  A )
 
Theoremreaddcan 8071 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( C  +  A )  =  ( C  +  B )  <->  A  =  B ) )
 
Theorem00id 8072  0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( 0  +  0 )  =  0
 
Theoremaddid1i 8073  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( A  +  0 )  =  A
 
Theoremaddid2i 8074  0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( 0  +  A )  =  A
 
Theoremaddcomi 8075 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  B )  =  ( B  +  A )
 
Theoremaddcomli 8076 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  +  B )  =  C   =>    |-  ( B  +  A )  =  C
 
Theoremmul12i 8077 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C ) )
 
Theoremmul32i 8078 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B )
 
Theoremmul4i 8079 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D ) )
 
Theoremaddid1d 8080  0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  0 )  =  A )
 
Theoremaddid2d 8081  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 0  +  A )  =  A )
 
Theoremaddcomd 8082 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  B )  =  ( B  +  A ) )
 
Theoremmul12d 8083 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C ) ) )
 
Theoremmul32d 8084 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B ) )
 
Theoremmul31d 8085 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( ( C  x.  B )  x.  A ) )
 
Theoremmul4d 8086 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
 
Theoremmuladd11r 8087 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B )  +  ( A  +  B )
 )  +  1 ) )
 
Theoremcomraddd 8088 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  A  =  ( C  +  B ) )
 
4.3  Real and complex numbers - basic operations
 
4.3.1  Addition
 
Theoremadd12 8089 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C )
 )  =  ( B  +  ( A  +  C ) ) )
 
Theoremadd32 8090 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd32r 8091 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C )
 )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd4 8092 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( B  +  D ) ) )
 
Theoremadd42 8093 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( D  +  B ) ) )
 
Theoremadd12i 8094 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C )
 )
 
Theoremadd32i 8095 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B )
 
Theoremadd4i 8096 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( B  +  D ) )
 
Theoremadd42i 8097 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  +  ( C  +  D )
 )  =  ( ( A  +  C )  +  ( D  +  B ) )
 
Theoremadd12d 8098 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C )
 ) )
 
Theoremadd32d 8099 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B ) )
 
Theoremadd4d 8100 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D )
 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14370
  Copyright terms: Public domain < Previous  Next >