ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrel Unicode version

Theorem ltrel 8033
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel  |-  Rel  <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 8032 . 2  |-  <  C_  ( RR*  X.  RR* )
2 relxp 4747 . 2  |-  Rel  ( RR*  X.  RR* )
3 relss 4725 . 2  |-  (  <  C_  ( RR*  X.  RR* )  ->  ( Rel  ( RR*  X. 
RR* )  ->  Rel  <  ) )
41, 2, 3mp2 16 1  |-  Rel  <
Colors of variables: wff set class
Syntax hints:    C_ wss 3141    X. cxp 4636   Rel wrel 4643   RR*cxr 8005    < clt 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pr 3611  df-opab 4077  df-xp 4644  df-rel 4645  df-xr 8010  df-ltxr 8011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator