ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrel Unicode version

Theorem ltrel 7960
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel  |-  Rel  <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 7959 . 2  |-  <  C_  ( RR*  X.  RR* )
2 relxp 4713 . 2  |-  Rel  ( RR*  X.  RR* )
3 relss 4691 . 2  |-  (  <  C_  ( RR*  X.  RR* )  ->  ( Rel  ( RR*  X. 
RR* )  ->  Rel  <  ) )
41, 2, 3mp2 16 1  |-  Rel  <
Colors of variables: wff set class
Syntax hints:    C_ wss 3116    X. cxp 4602   Rel wrel 4609   RR*cxr 7932    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pr 3583  df-opab 4044  df-xp 4610  df-rel 4611  df-xr 7937  df-ltxr 7938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator