Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lerelxr | GIF version |
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 7972 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
2 | difss 3259 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
3 | 1, 2 | eqsstri 3185 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3124 ⊆ wss 3127 × cxp 4618 ◡ccnv 4619 ℝ*cxr 7965 < clt 7966 ≤ cle 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-le 7972 |
This theorem is referenced by: lerel 7995 |
Copyright terms: Public domain | W3C validator |