ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerelxr GIF version

Theorem lerelxr 8033
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 8011 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 3273 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3199 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff set class
Syntax hints:  cdif 3138  wss 3141   × cxp 4636  ccnv 4637  *cxr 8004   < clt 8005  cle 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-le 8011
This theorem is referenced by:  lerel  8034
  Copyright terms: Public domain W3C validator