| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lerelxr | GIF version | ||
| Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-le 8067 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 2 | difss 3289 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
| 3 | 1, 2 | eqsstri 3215 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) | 
| Colors of variables: wff set class | 
| Syntax hints: ∖ cdif 3154 ⊆ wss 3157 × cxp 4661 ◡ccnv 4662 ℝ*cxr 8060 < clt 8061 ≤ cle 8062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-le 8067 | 
| This theorem is referenced by: lerel 8090 cnfldstr 14114 cnfldle 14123 znval 14192 znle 14193 znbaslemnn 14195 | 
| Copyright terms: Public domain | W3C validator |