ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerel Unicode version

Theorem lerel 8171
Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel  |-  Rel  <_

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 8170 . 2  |-  <_  C_  ( RR*  X.  RR* )
2 relxp 4802 . 2  |-  Rel  ( RR*  X.  RR* )
3 relss 4780 . 2  |-  (  <_  C_  ( RR*  X.  RR* )  ->  ( Rel  ( RR*  X. 
RR* )  ->  Rel  <_  ) )
41, 2, 3mp2 16 1  |-  Rel  <_
Colors of variables: wff set class
Syntax hints:    C_ wss 3174    X. cxp 4691   Rel wrel 4698   RR*cxr 8141    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-opab 4122  df-xp 4699  df-rel 4700  df-le 8148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator