ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerel Unicode version

Theorem lerel 8051
Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel  |-  Rel  <_

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 8050 . 2  |-  <_  C_  ( RR*  X.  RR* )
2 relxp 4753 . 2  |-  Rel  ( RR*  X.  RR* )
3 relss 4731 . 2  |-  (  <_  C_  ( RR*  X.  RR* )  ->  ( Rel  ( RR*  X. 
RR* )  ->  Rel  <_  ) )
41, 2, 3mp2 16 1  |-  Rel  <_
Colors of variables: wff set class
Syntax hints:    C_ wss 3144    X. cxp 4642   Rel wrel 4649   RR*cxr 8021    <_ cle 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-opab 4080  df-xp 4650  df-rel 4651  df-le 8028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator