ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerel Unicode version

Theorem lerel 8135
Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerel  |-  Rel  <_

Proof of Theorem lerel
StepHypRef Expression
1 lerelxr 8134 . 2  |-  <_  C_  ( RR*  X.  RR* )
2 relxp 4783 . 2  |-  Rel  ( RR*  X.  RR* )
3 relss 4761 . 2  |-  (  <_  C_  ( RR*  X.  RR* )  ->  ( Rel  ( RR*  X. 
RR* )  ->  Rel  <_  ) )
41, 2, 3mp2 16 1  |-  Rel  <_
Colors of variables: wff set class
Syntax hints:    C_ wss 3165    X. cxp 4672   Rel wrel 4679   RR*cxr 8105    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-opab 4105  df-xp 4680  df-rel 4681  df-le 8112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator