| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3227 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqsstrri 3234 ssrab2 3286 ssrab3 3287 rabssab 3289 difdifdirss 3553 ifssun 3594 opabss 4124 brab2ga 4768 relopabi 4821 dmopabss 4909 resss 5002 relres 5006 exse2 5075 rnin 5111 rnxpss 5133 cnvcnvss 5156 dmmptss 5198 cocnvss 5227 fnres 5412 resasplitss 5477 fabexg 5485 f0 5488 ffvresb 5766 isoini2 5911 dmoprabss 6050 elmpocl 6164 tposssxp 6358 dftpos4 6372 smores 6401 smores2 6403 iordsmo 6406 swoer 6671 swoord1 6672 swoord2 6673 ecss 6686 ecopovsym 6741 ecopovtrn 6742 ecopover 6743 ecopovsymg 6744 ecopovtrng 6745 ecopoverg 6746 opabfi 7061 sbthlem7 7091 caserel 7215 ctssdccl 7239 pw1on 7372 pinn 7457 niex 7460 ltrelpi 7472 dmaddpi 7473 dmmulpi 7474 enqex 7508 ltrelnq 7513 enq0ex 7587 ltrelpr 7653 enrex 7885 ltrelsr 7886 ltrelre 7981 axaddf 8016 axmulf 8017 ltrelxr 8168 lerelxr 8170 nn0ssre 9334 nn0ssz 9425 rpre 9817 fz1ssfz0 10274 infssuzcldc 10415 swrd00g 11140 cau3 11541 fsum3cvg3 11822 isumshft 11916 explecnv 11931 clim2prod 11965 ntrivcvgap 11974 dvdszrcl 12218 dvdsflip 12277 phimullem 12662 eulerthlemfi 12665 eulerthlemrprm 12666 eulerthlema 12667 eulerthlemh 12668 eulerthlemth 12669 4sqlem1 12826 4sqlem19 12847 ctiunctlemuom 12922 structcnvcnv 12963 fvsetsid 12981 strleun 13051 dmtopon 14610 lmfval 14779 lmbrf 14802 cnconst2 14820 txuni2 14843 xmeter 15023 ivthinclemex 15229 dvidsslem 15280 dvconstss 15285 dvrecap 15300 lgsquadlemofi 15668 lgsquadlem1 15669 lgsquadlem2 15670 2sqlem7 15713 |
| Copyright terms: Public domain | W3C validator |