![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 |
![]() ![]() ![]() ![]() |
eqsstr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqsstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqsstr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseq1i 3195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-in 3149 df-ss 3156 |
This theorem is referenced by: eqsstrri 3202 ssrab2 3254 ssrab3 3255 rabssab 3257 difdifdirss 3521 ifssun 3562 opabss 4081 brab2ga 4715 relopabi 4766 dmopabss 4853 resss 4945 relres 4949 exse2 5016 rnin 5052 rnxpss 5074 cnvcnvss 5097 dmmptss 5139 cocnvss 5168 fnres 5346 resasplitss 5409 fabexg 5417 f0 5420 ffvresb 5694 isoini2 5835 dmoprabss 5972 elmpocl 6085 tposssxp 6267 dftpos4 6281 smores 6310 smores2 6312 iordsmo 6315 swoer 6580 swoord1 6581 swoord2 6582 ecss 6593 ecopovsym 6648 ecopovtrn 6649 ecopover 6650 ecopovsymg 6651 ecopovtrng 6652 ecopoverg 6653 sbthlem7 6979 caserel 7103 ctssdccl 7127 pw1on 7242 pinn 7325 niex 7328 ltrelpi 7340 dmaddpi 7341 dmmulpi 7342 enqex 7376 ltrelnq 7381 enq0ex 7455 ltrelpr 7521 enrex 7753 ltrelsr 7754 ltrelre 7849 axaddf 7884 axmulf 7885 ltrelxr 8035 lerelxr 8037 nn0ssre 9197 nn0ssz 9288 rpre 9677 fz1ssfz0 10134 cau3 11141 fsum3cvg3 11421 isumshft 11515 explecnv 11530 clim2prod 11564 ntrivcvgap 11573 dvdszrcl 11816 dvdsflip 11874 infssuzcldc 11969 phimullem 12242 eulerthlemfi 12245 eulerthlemrprm 12246 eulerthlema 12247 eulerthlemh 12248 eulerthlemth 12249 4sqlem1 12403 ctiunctlemuom 12454 structcnvcnv 12495 fvsetsid 12513 strleun 12581 dmtopon 13906 lmfval 14075 lmbrf 14098 cnconst2 14116 txuni2 14139 xmeter 14319 ivthinclemex 14503 dvrecap 14560 2sqlem7 14851 |
Copyright terms: Public domain | W3C validator |