Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | |
eqsstr.2 |
Ref | Expression |
---|---|
eqsstri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 | |
2 | eqsstr.1 | . . 3 | |
3 | 2 | sseq1i 3168 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqsstrri 3175 ssrab2 3227 ssrab3 3228 rabssab 3230 difdifdirss 3493 ifssun 3534 opabss 4046 brab2ga 4679 relopabi 4730 dmopabss 4816 resss 4908 relres 4912 exse2 4978 rnin 5013 rnxpss 5035 cnvcnvss 5058 dmmptss 5100 cocnvss 5129 fnres 5304 resasplitss 5367 fabexg 5375 f0 5378 ffvresb 5648 isoini2 5787 dmoprabss 5924 elmpocl 6036 tposssxp 6217 dftpos4 6231 smores 6260 smores2 6262 iordsmo 6265 swoer 6529 swoord1 6530 swoord2 6531 ecss 6542 ecopovsym 6597 ecopovtrn 6598 ecopover 6599 ecopovsymg 6600 ecopovtrng 6601 ecopoverg 6602 sbthlem7 6928 caserel 7052 ctssdccl 7076 pw1on 7182 pinn 7250 niex 7253 ltrelpi 7265 dmaddpi 7266 dmmulpi 7267 enqex 7301 ltrelnq 7306 enq0ex 7380 ltrelpr 7446 enrex 7678 ltrelsr 7679 ltrelre 7774 axaddf 7809 axmulf 7810 ltrelxr 7959 lerelxr 7961 nn0ssre 9118 nn0ssz 9209 rpre 9596 fz1ssfz0 10052 cau3 11057 fsum3cvg3 11337 isumshft 11431 explecnv 11446 clim2prod 11480 ntrivcvgap 11489 dvdszrcl 11732 dvdsflip 11789 infssuzcldc 11884 phimullem 12157 eulerthlemfi 12160 eulerthlemrprm 12161 eulerthlema 12162 eulerthlemh 12163 eulerthlemth 12164 4sqlem1 12318 ctiunctlemuom 12369 structcnvcnv 12410 fvsetsid 12428 strleun 12484 dmtopon 12661 lmfval 12832 lmbrf 12855 cnconst2 12873 txuni2 12896 xmeter 13076 ivthinclemex 13260 dvrecap 13317 2sqlem7 13597 |
Copyright terms: Public domain | W3C validator |