| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3210 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrri 3217 ssrab2 3269 ssrab3 3270 rabssab 3272 difdifdirss 3536 ifssun 3576 opabss 4098 brab2ga 4739 relopabi 4792 dmopabss 4879 resss 4971 relres 4975 exse2 5044 rnin 5080 rnxpss 5102 cnvcnvss 5125 dmmptss 5167 cocnvss 5196 fnres 5377 resasplitss 5440 fabexg 5448 f0 5451 ffvresb 5728 isoini2 5869 dmoprabss 6008 elmpocl 6122 tposssxp 6316 dftpos4 6330 smores 6359 smores2 6361 iordsmo 6364 swoer 6629 swoord1 6630 swoord2 6631 ecss 6644 ecopovsym 6699 ecopovtrn 6700 ecopover 6701 ecopovsymg 6702 ecopovtrng 6703 ecopoverg 6704 opabfi 7008 sbthlem7 7038 caserel 7162 ctssdccl 7186 pw1on 7309 pinn 7393 niex 7396 ltrelpi 7408 dmaddpi 7409 dmmulpi 7410 enqex 7444 ltrelnq 7449 enq0ex 7523 ltrelpr 7589 enrex 7821 ltrelsr 7822 ltrelre 7917 axaddf 7952 axmulf 7953 ltrelxr 8104 lerelxr 8106 nn0ssre 9270 nn0ssz 9361 rpre 9752 fz1ssfz0 10209 infssuzcldc 10342 cau3 11297 fsum3cvg3 11578 isumshft 11672 explecnv 11687 clim2prod 11721 ntrivcvgap 11730 dvdszrcl 11974 dvdsflip 12033 phimullem 12418 eulerthlemfi 12421 eulerthlemrprm 12422 eulerthlema 12423 eulerthlemh 12424 eulerthlemth 12425 4sqlem1 12582 4sqlem19 12603 ctiunctlemuom 12678 structcnvcnv 12719 fvsetsid 12737 strleun 12807 dmtopon 14343 lmfval 14512 lmbrf 14535 cnconst2 14553 txuni2 14576 xmeter 14756 ivthinclemex 14962 dvidsslem 15013 dvconstss 15018 dvrecap 15033 lgsquadlemofi 15401 lgsquadlem1 15402 lgsquadlem2 15403 2sqlem7 15446 |
| Copyright terms: Public domain | W3C validator |