| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3219 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrri 3226 ssrab2 3278 ssrab3 3279 rabssab 3281 difdifdirss 3545 ifssun 3585 opabss 4108 brab2ga 4750 relopabi 4803 dmopabss 4890 resss 4983 relres 4987 exse2 5056 rnin 5092 rnxpss 5114 cnvcnvss 5137 dmmptss 5179 cocnvss 5208 fnres 5392 resasplitss 5455 fabexg 5463 f0 5466 ffvresb 5743 isoini2 5888 dmoprabss 6027 elmpocl 6141 tposssxp 6335 dftpos4 6349 smores 6378 smores2 6380 iordsmo 6383 swoer 6648 swoord1 6649 swoord2 6650 ecss 6663 ecopovsym 6718 ecopovtrn 6719 ecopover 6720 ecopovsymg 6721 ecopovtrng 6722 ecopoverg 6723 opabfi 7035 sbthlem7 7065 caserel 7189 ctssdccl 7213 pw1on 7338 pinn 7422 niex 7425 ltrelpi 7437 dmaddpi 7438 dmmulpi 7439 enqex 7473 ltrelnq 7478 enq0ex 7552 ltrelpr 7618 enrex 7850 ltrelsr 7851 ltrelre 7946 axaddf 7981 axmulf 7982 ltrelxr 8133 lerelxr 8135 nn0ssre 9299 nn0ssz 9390 rpre 9782 fz1ssfz0 10239 infssuzcldc 10378 swrd00g 11102 cau3 11426 fsum3cvg3 11707 isumshft 11801 explecnv 11816 clim2prod 11850 ntrivcvgap 11859 dvdszrcl 12103 dvdsflip 12162 phimullem 12547 eulerthlemfi 12550 eulerthlemrprm 12551 eulerthlema 12552 eulerthlemh 12553 eulerthlemth 12554 4sqlem1 12711 4sqlem19 12732 ctiunctlemuom 12807 structcnvcnv 12848 fvsetsid 12866 strleun 12936 dmtopon 14495 lmfval 14664 lmbrf 14687 cnconst2 14705 txuni2 14728 xmeter 14908 ivthinclemex 15114 dvidsslem 15165 dvconstss 15170 dvrecap 15185 lgsquadlemofi 15553 lgsquadlem1 15554 lgsquadlem2 15555 2sqlem7 15598 |
| Copyright terms: Public domain | W3C validator |