![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 |
![]() ![]() ![]() ![]() |
eqsstr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqsstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqsstr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseq1i 3206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqsstrri 3213 ssrab2 3265 ssrab3 3266 rabssab 3268 difdifdirss 3532 ifssun 3572 opabss 4094 brab2ga 4735 relopabi 4788 dmopabss 4875 resss 4967 relres 4971 exse2 5040 rnin 5076 rnxpss 5098 cnvcnvss 5121 dmmptss 5163 cocnvss 5192 fnres 5371 resasplitss 5434 fabexg 5442 f0 5445 ffvresb 5722 isoini2 5863 dmoprabss 6001 elmpocl 6115 tposssxp 6304 dftpos4 6318 smores 6347 smores2 6349 iordsmo 6352 swoer 6617 swoord1 6618 swoord2 6619 ecss 6632 ecopovsym 6687 ecopovtrn 6688 ecopover 6689 ecopovsymg 6690 ecopovtrng 6691 ecopoverg 6692 opabfi 6994 sbthlem7 7024 caserel 7148 ctssdccl 7172 pw1on 7288 pinn 7371 niex 7374 ltrelpi 7386 dmaddpi 7387 dmmulpi 7388 enqex 7422 ltrelnq 7427 enq0ex 7501 ltrelpr 7567 enrex 7799 ltrelsr 7800 ltrelre 7895 axaddf 7930 axmulf 7931 ltrelxr 8082 lerelxr 8084 nn0ssre 9247 nn0ssz 9338 rpre 9729 fz1ssfz0 10186 cau3 11262 fsum3cvg3 11542 isumshft 11636 explecnv 11651 clim2prod 11685 ntrivcvgap 11694 dvdszrcl 11938 dvdsflip 11996 infssuzcldc 12091 phimullem 12366 eulerthlemfi 12369 eulerthlemrprm 12370 eulerthlema 12371 eulerthlemh 12372 eulerthlemth 12373 4sqlem1 12529 4sqlem19 12550 ctiunctlemuom 12596 structcnvcnv 12637 fvsetsid 12655 strleun 12725 dmtopon 14202 lmfval 14371 lmbrf 14394 cnconst2 14412 txuni2 14435 xmeter 14615 ivthinclemex 14821 dvidsslem 14872 dvconstss 14877 dvrecap 14892 lgsquadlemofi 15233 lgsquadlem1 15234 lgsquadlem2 15235 2sqlem7 15278 |
Copyright terms: Public domain | W3C validator |