| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3210 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrri 3217 ssrab2 3269 ssrab3 3270 rabssab 3272 difdifdirss 3536 ifssun 3576 opabss 4098 brab2ga 4739 relopabi 4792 dmopabss 4879 resss 4971 relres 4975 exse2 5044 rnin 5080 rnxpss 5102 cnvcnvss 5125 dmmptss 5167 cocnvss 5196 fnres 5375 resasplitss 5438 fabexg 5446 f0 5449 ffvresb 5726 isoini2 5867 dmoprabss 6006 elmpocl 6120 tposssxp 6309 dftpos4 6323 smores 6352 smores2 6354 iordsmo 6357 swoer 6622 swoord1 6623 swoord2 6624 ecss 6637 ecopovsym 6692 ecopovtrn 6693 ecopover 6694 ecopovsymg 6695 ecopovtrng 6696 ecopoverg 6697 opabfi 7001 sbthlem7 7031 caserel 7155 ctssdccl 7179 pw1on 7296 pinn 7379 niex 7382 ltrelpi 7394 dmaddpi 7395 dmmulpi 7396 enqex 7430 ltrelnq 7435 enq0ex 7509 ltrelpr 7575 enrex 7807 ltrelsr 7808 ltrelre 7903 axaddf 7938 axmulf 7939 ltrelxr 8090 lerelxr 8092 nn0ssre 9256 nn0ssz 9347 rpre 9738 fz1ssfz0 10195 infssuzcldc 10328 cau3 11283 fsum3cvg3 11564 isumshft 11658 explecnv 11673 clim2prod 11707 ntrivcvgap 11716 dvdszrcl 11960 dvdsflip 12019 phimullem 12404 eulerthlemfi 12407 eulerthlemrprm 12408 eulerthlema 12409 eulerthlemh 12410 eulerthlemth 12411 4sqlem1 12568 4sqlem19 12589 ctiunctlemuom 12664 structcnvcnv 12705 fvsetsid 12723 strleun 12793 dmtopon 14285 lmfval 14454 lmbrf 14477 cnconst2 14495 txuni2 14518 xmeter 14698 ivthinclemex 14904 dvidsslem 14955 dvconstss 14960 dvrecap 14975 lgsquadlemofi 15343 lgsquadlem1 15344 lgsquadlem2 15345 2sqlem7 15388 |
| Copyright terms: Public domain | W3C validator |