Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | |
eqsstr.2 |
Ref | Expression |
---|---|
eqsstri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 | |
2 | eqsstr.1 | . . 3 | |
3 | 2 | sseq1i 3173 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqsstrri 3180 ssrab2 3232 ssrab3 3233 rabssab 3235 difdifdirss 3499 ifssun 3540 opabss 4053 brab2ga 4686 relopabi 4737 dmopabss 4823 resss 4915 relres 4919 exse2 4985 rnin 5020 rnxpss 5042 cnvcnvss 5065 dmmptss 5107 cocnvss 5136 fnres 5314 resasplitss 5377 fabexg 5385 f0 5388 ffvresb 5659 isoini2 5798 dmoprabss 5935 elmpocl 6047 tposssxp 6228 dftpos4 6242 smores 6271 smores2 6273 iordsmo 6276 swoer 6541 swoord1 6542 swoord2 6543 ecss 6554 ecopovsym 6609 ecopovtrn 6610 ecopover 6611 ecopovsymg 6612 ecopovtrng 6613 ecopoverg 6614 sbthlem7 6940 caserel 7064 ctssdccl 7088 pw1on 7203 pinn 7271 niex 7274 ltrelpi 7286 dmaddpi 7287 dmmulpi 7288 enqex 7322 ltrelnq 7327 enq0ex 7401 ltrelpr 7467 enrex 7699 ltrelsr 7700 ltrelre 7795 axaddf 7830 axmulf 7831 ltrelxr 7980 lerelxr 7982 nn0ssre 9139 nn0ssz 9230 rpre 9617 fz1ssfz0 10073 cau3 11079 fsum3cvg3 11359 isumshft 11453 explecnv 11468 clim2prod 11502 ntrivcvgap 11511 dvdszrcl 11754 dvdsflip 11811 infssuzcldc 11906 phimullem 12179 eulerthlemfi 12182 eulerthlemrprm 12183 eulerthlema 12184 eulerthlemh 12185 eulerthlemth 12186 4sqlem1 12340 ctiunctlemuom 12391 structcnvcnv 12432 fvsetsid 12450 strleun 12507 dmtopon 12815 lmfval 12986 lmbrf 13009 cnconst2 13027 txuni2 13050 xmeter 13230 ivthinclemex 13414 dvrecap 13471 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |