Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | |
eqsstr.2 |
Ref | Expression |
---|---|
eqsstri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 | |
2 | eqsstr.1 | . . 3 | |
3 | 2 | sseq1i 3173 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqsstrri 3180 ssrab2 3232 ssrab3 3233 rabssab 3235 difdifdirss 3498 ifssun 3539 opabss 4051 brab2ga 4684 relopabi 4735 dmopabss 4821 resss 4913 relres 4917 exse2 4983 rnin 5018 rnxpss 5040 cnvcnvss 5063 dmmptss 5105 cocnvss 5134 fnres 5312 resasplitss 5375 fabexg 5383 f0 5386 ffvresb 5657 isoini2 5796 dmoprabss 5933 elmpocl 6045 tposssxp 6226 dftpos4 6240 smores 6269 smores2 6271 iordsmo 6274 swoer 6539 swoord1 6540 swoord2 6541 ecss 6552 ecopovsym 6607 ecopovtrn 6608 ecopover 6609 ecopovsymg 6610 ecopovtrng 6611 ecopoverg 6612 sbthlem7 6938 caserel 7062 ctssdccl 7086 pw1on 7196 pinn 7264 niex 7267 ltrelpi 7279 dmaddpi 7280 dmmulpi 7281 enqex 7315 ltrelnq 7320 enq0ex 7394 ltrelpr 7460 enrex 7692 ltrelsr 7693 ltrelre 7788 axaddf 7823 axmulf 7824 ltrelxr 7973 lerelxr 7975 nn0ssre 9132 nn0ssz 9223 rpre 9610 fz1ssfz0 10066 cau3 11072 fsum3cvg3 11352 isumshft 11446 explecnv 11461 clim2prod 11495 ntrivcvgap 11504 dvdszrcl 11747 dvdsflip 11804 infssuzcldc 11899 phimullem 12172 eulerthlemfi 12175 eulerthlemrprm 12176 eulerthlema 12177 eulerthlemh 12178 eulerthlemth 12179 4sqlem1 12333 ctiunctlemuom 12384 structcnvcnv 12425 fvsetsid 12443 strleun 12500 dmtopon 12780 lmfval 12951 lmbrf 12974 cnconst2 12992 txuni2 13015 xmeter 13195 ivthinclemex 13379 dvrecap 13436 2sqlem7 13716 |
Copyright terms: Public domain | W3C validator |