| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3250 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrri 3257 ssrab2 3309 ssrab3 3310 rabssab 3312 difdifdirss 3576 ifssun 3617 opabss 4148 brab2ga 4794 relopabi 4847 dmopabss 4935 resss 5029 relres 5033 exse2 5102 rnin 5138 rnxpss 5160 cnvcnvss 5183 dmmptss 5225 cocnvss 5254 fnres 5440 resasplitss 5505 fabexg 5513 f0 5516 ffvresb 5798 isoini2 5943 dmoprabss 6086 elmpocl 6200 tposssxp 6395 dftpos4 6409 smores 6438 smores2 6440 iordsmo 6443 swoer 6708 swoord1 6709 swoord2 6710 ecss 6723 ecopovsym 6778 ecopovtrn 6779 ecopover 6780 ecopovsymg 6781 ecopovtrng 6782 ecopoverg 6783 opabfi 7100 sbthlem7 7130 caserel 7254 ctssdccl 7278 pw1on 7411 pinn 7496 niex 7499 ltrelpi 7511 dmaddpi 7512 dmmulpi 7513 enqex 7547 ltrelnq 7552 enq0ex 7626 ltrelpr 7692 enrex 7924 ltrelsr 7925 ltrelre 8020 axaddf 8055 axmulf 8056 ltrelxr 8207 lerelxr 8209 nn0ssre 9373 nn0ssz 9464 rpre 9856 fz1ssfz0 10313 infssuzcldc 10455 swrd00g 11181 cau3 11626 fsum3cvg3 11907 isumshft 12001 explecnv 12016 clim2prod 12050 ntrivcvgap 12059 dvdszrcl 12303 dvdsflip 12362 phimullem 12747 eulerthlemfi 12750 eulerthlemrprm 12751 eulerthlema 12752 eulerthlemh 12753 eulerthlemth 12754 4sqlem1 12911 4sqlem19 12932 ctiunctlemuom 13007 structcnvcnv 13048 fvsetsid 13066 strleun 13137 dmtopon 14697 lmfval 14867 lmbrf 14889 cnconst2 14907 txuni2 14930 xmeter 15110 ivthinclemex 15316 dvidsslem 15367 dvconstss 15372 dvrecap 15387 lgsquadlemofi 15755 lgsquadlem1 15756 lgsquadlem2 15757 2sqlem7 15800 |
| Copyright terms: Public domain | W3C validator |