| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 |
|
| eqsstr.2 |
|
| Ref | Expression |
|---|---|
| eqsstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 |
. 2
| |
| 2 | eqsstr.1 |
. . 3
| |
| 3 | 2 | sseq1i 3219 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrri 3226 ssrab2 3278 ssrab3 3279 rabssab 3281 difdifdirss 3545 ifssun 3585 opabss 4109 brab2ga 4751 relopabi 4804 dmopabss 4891 resss 4984 relres 4988 exse2 5057 rnin 5093 rnxpss 5115 cnvcnvss 5138 dmmptss 5180 cocnvss 5209 fnres 5394 resasplitss 5457 fabexg 5465 f0 5468 ffvresb 5745 isoini2 5890 dmoprabss 6029 elmpocl 6143 tposssxp 6337 dftpos4 6351 smores 6380 smores2 6382 iordsmo 6385 swoer 6650 swoord1 6651 swoord2 6652 ecss 6665 ecopovsym 6720 ecopovtrn 6721 ecopover 6722 ecopovsymg 6723 ecopovtrng 6724 ecopoverg 6725 opabfi 7037 sbthlem7 7067 caserel 7191 ctssdccl 7215 pw1on 7340 pinn 7424 niex 7427 ltrelpi 7439 dmaddpi 7440 dmmulpi 7441 enqex 7475 ltrelnq 7480 enq0ex 7554 ltrelpr 7620 enrex 7852 ltrelsr 7853 ltrelre 7948 axaddf 7983 axmulf 7984 ltrelxr 8135 lerelxr 8137 nn0ssre 9301 nn0ssz 9392 rpre 9784 fz1ssfz0 10241 infssuzcldc 10380 swrd00g 11105 cau3 11459 fsum3cvg3 11740 isumshft 11834 explecnv 11849 clim2prod 11883 ntrivcvgap 11892 dvdszrcl 12136 dvdsflip 12195 phimullem 12580 eulerthlemfi 12583 eulerthlemrprm 12584 eulerthlema 12585 eulerthlemh 12586 eulerthlemth 12587 4sqlem1 12744 4sqlem19 12765 ctiunctlemuom 12840 structcnvcnv 12881 fvsetsid 12899 strleun 12969 dmtopon 14528 lmfval 14697 lmbrf 14720 cnconst2 14738 txuni2 14761 xmeter 14941 ivthinclemex 15147 dvidsslem 15198 dvconstss 15203 dvrecap 15218 lgsquadlemofi 15586 lgsquadlem1 15587 lgsquadlem2 15588 2sqlem7 15631 |
| Copyright terms: Public domain | W3C validator |