ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq3dc Unicode version

Theorem moeq3dc 2956
Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.)
Hypotheses
Ref Expression
moeq3dc.1  |-  A  e. 
_V
moeq3dc.2  |-  B  e. 
_V
moeq3dc.3  |-  C  e. 
_V
moeq3dc.4  |-  -.  ( ph  /\  ps )
Assertion
Ref Expression
moeq3dc  |-  (DECID  ph  ->  (DECID  ps 
->  E* x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) ) )
Distinct variable groups:    ph, x    ps, x    x, A    x, B    x, C

Proof of Theorem moeq3dc
StepHypRef Expression
1 moeq3dc.1 . . 3  |-  A  e. 
_V
2 moeq3dc.2 . . 3  |-  B  e. 
_V
3 moeq3dc.3 . . 3  |-  C  e. 
_V
4 moeq3dc.4 . . 3  |-  -.  ( ph  /\  ps )
51, 2, 3, 4eueq3dc 2954 . 2  |-  (DECID  ph  ->  (DECID  ps 
->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) ) )
6 eumo 2087 . 2  |-  ( E! x ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  ->  E* x ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) )
75, 6syl6 33 1  |-  (DECID  ph  ->  (DECID  ps 
->  E* x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373   E!weu 2055   E*wmo 2056    e. wcel 2178   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator