ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq Unicode version

Theorem moeq 2901
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
moeq  |-  E* x  x  =  A
Distinct variable group:    x, A

Proof of Theorem moeq
StepHypRef Expression
1 isset 2732 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
2 eueq 2897 . . . 4  |-  ( A  e.  _V  <->  E! x  x  =  A )
31, 2bitr3i 185 . . 3  |-  ( E. x  x  =  A  <-> 
E! x  x  =  A )
43biimpi 119 . 2  |-  ( E. x  x  =  A  ->  E! x  x  =  A )
5 df-mo 2018 . 2  |-  ( E* x  x  =  A  <-> 
( E. x  x  =  A  ->  E! x  x  =  A
) )
64, 5mpbir 145 1  |-  E* x  x  =  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480   E!weu 2014   E*wmo 2015    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  euxfr2dc  2911  reueq  2925  mosn  3612  sndisj  3978  disjxsn  3980  reusv1  4436  funopabeq  5224  funcnvsn  5233  fvmptg  5562  fvopab6  5582  ovmpt4g  5964  ovi3  5978  ov6g  5979  oprabex3  6097  1stconst  6189  2ndconst  6190  axaddf  7809  axmulf  7810
  Copyright terms: Public domain W3C validator