ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq Unicode version

Theorem moeq 2936
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
moeq  |-  E* x  x  =  A
Distinct variable group:    x, A

Proof of Theorem moeq
StepHypRef Expression
1 isset 2766 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
2 eueq 2932 . . . 4  |-  ( A  e.  _V  <->  E! x  x  =  A )
31, 2bitr3i 186 . . 3  |-  ( E. x  x  =  A  <-> 
E! x  x  =  A )
43biimpi 120 . 2  |-  ( E. x  x  =  A  ->  E! x  x  =  A )
5 df-mo 2046 . 2  |-  ( E* x  x  =  A  <-> 
( E. x  x  =  A  ->  E! x  x  =  A
) )
64, 5mpbir 146 1  |-  E* x  x  =  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503   E!weu 2042   E*wmo 2043    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  euxfr2dc  2946  reueq  2960  mosn  3655  sndisj  4026  disjxsn  4028  reusv1  4490  funopabeq  5291  funcnvsn  5300  fvmptg  5634  fvopab6  5655  ovmpt4g  6042  ovi3  6057  ov6g  6058  oprabex3  6183  1stconst  6276  2ndconst  6277  axaddf  7930  axmulf  7931
  Copyright terms: Public domain W3C validator