| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq | Unicode version | ||
| Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| moeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2806 |
. . . 4
| |
| 2 | eueq 2974 |
. . . 4
| |
| 3 | 1, 2 | bitr3i 186 |
. . 3
|
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | df-mo 2081 |
. 2
| |
| 6 | 4, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: euxfr2dc 2988 reueq 3002 mosn 3702 sndisj 4079 disjxsn 4081 reusv1 4549 funopabeq 5354 funcnvsn 5366 fvmptg 5710 fvopab6 5731 ovmpt4g 6127 ovi3 6142 ov6g 6143 oprabex3 6274 1stconst 6367 2ndconst 6368 axaddf 8055 axmulf 8056 |
| Copyright terms: Public domain | W3C validator |