Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moeq | Unicode version |
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
moeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 2732 | . . . 4 | |
2 | eueq 2897 | . . . 4 | |
3 | 1, 2 | bitr3i 185 | . . 3 |
4 | 3 | biimpi 119 | . 2 |
5 | df-mo 2018 | . 2 | |
6 | 4, 5 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wex 1480 weu 2014 wmo 2015 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: euxfr2dc 2911 reueq 2925 mosn 3612 sndisj 3978 disjxsn 3980 reusv1 4436 funopabeq 5224 funcnvsn 5233 fvmptg 5562 fvopab6 5582 ovmpt4g 5964 ovi3 5978 ov6g 5979 oprabex3 6097 1stconst 6189 2ndconst 6190 axaddf 7809 axmulf 7810 |
Copyright terms: Public domain | W3C validator |