ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsr2d Unicode version

Theorem dvdsr2d 14053
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvdsr2d.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
dvdsr2d  |-  ( ph  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsr2d
StepHypRef Expression
1 dvdsr2d.x . 2  |-  ( ph  ->  X  e.  B )
2 dvdsrvald.1 . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
3 dvdsrvald.2 . . 3  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
4 dvdsrvald.r . . 3  |-  ( ph  ->  R  e. SRing )
5 dvdsrvald.3 . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
62, 3, 4, 5dvdsrd 14052 . 2  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
71, 6mpbirand 441 1  |-  ( ph  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921   ||rcdsr 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047
This theorem is referenced by:  dvdsr01  14062  dvdsr02  14063  unitgrp  14074  rhmdvdsr  14133  rspsn  14492  znunit  14617
  Copyright terms: Public domain W3C validator