ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxsuffeqwrdeq Unicode version

Theorem pfxsuffeqwrdeq 11230
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
Assertion
Ref Expression
pfxsuffeqwrdeq  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  S  <-> 
( ( `  W
)  =  ( `  S
)  /\  ( ( W prefix  I )  =  ( S prefix  I )  /\  ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. ) ) ) ) )

Proof of Theorem pfxsuffeqwrdeq
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqwrd 11112 . . 3  |-  ( ( W  e. Word  V  /\  S  e. Word  V )  ->  ( W  =  S  <-> 
( ( `  W
)  =  ( `  S
)  /\  A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
213adant3 1041 . 2  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  S  <-> 
( ( `  W
)  =  ( `  S
)  /\  A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
3 elfzofz 10359 . . . . . . . . 9  |-  ( I  e.  ( 0..^ ( `  W ) )  ->  I  e.  ( 0 ... ( `  W
) ) )
4 fzosplit 10375 . . . . . . . . 9  |-  ( I  e.  ( 0 ... ( `  W )
)  ->  ( 0..^ ( `  W )
)  =  ( ( 0..^ I )  u.  ( I..^ ( `  W
) ) ) )
53, 4syl 14 . . . . . . . 8  |-  ( I  e.  ( 0..^ ( `  W ) )  -> 
( 0..^ ( `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ ( `  W ) ) ) )
653ad2ant3 1044 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( 0..^ ( `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ ( `  W ) ) ) )
76adantr 276 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( 0..^ ( `  W
) )  =  ( ( 0..^ I )  u.  ( I..^ ( `  W ) ) ) )
87raleqdv 2734 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  A. i  e.  ( ( 0..^ I )  u.  ( I..^ ( `  W ) ) ) ( W `  i
)  =  ( S `
 i ) ) )
9 ralunb 3385 . . . . 5  |-  ( A. i  e.  ( (
0..^ I )  u.  ( I..^ ( `  W
) ) ) ( W `  i )  =  ( S `  i )  <->  ( A. i  e.  ( 0..^ I ) ( W `
 i )  =  ( S `  i
)  /\  A. i  e.  ( I..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) )
108, 9bitrdi 196 . . . 4  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  ( A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i )  /\  A. i  e.  ( I..^ ( `  W )
) ( W `  i )  =  ( S `  i ) ) ) )
11 eqidd 2230 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  ->  I  =  I )
12 3simpa 1018 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( W  e. Word  V  /\  S  e. Word  V ) )
1312adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( W  e. Word  V  /\  S  e. Word  V ) )
14 elfzonn0 10386 . . . . . . . . . 10  |-  ( I  e.  ( 0..^ ( `  W ) )  ->  I  e.  NN0 )
1514, 14jca 306 . . . . . . . . 9  |-  ( I  e.  ( 0..^ ( `  W ) )  -> 
( I  e.  NN0  /\  I  e.  NN0 )
)
16153ad2ant3 1044 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( I  e.  NN0  /\  I  e.  NN0 )
)
1716adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( I  e.  NN0  /\  I  e.  NN0 )
)
18 elfzo0le 10385 . . . . . . . . 9  |-  ( I  e.  ( 0..^ ( `  W ) )  ->  I  <_  ( `  W )
)
19183ad2ant3 1044 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  ->  I  <_  ( `  W )
)
2019adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  ->  I  <_  ( `  W )
)
21 breq2 4087 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  S )  ->  (
I  <_  ( `  W
)  <->  I  <_  ( `  S
) ) )
2221adantl 277 . . . . . . . 8  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( I  <_  ( `  W )  <->  I  <_  ( `  S ) ) )
2320, 22mpbid 147 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  ->  I  <_  ( `  S )
)
24 pfxeq 11228 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( I  e. 
NN0  /\  I  e.  NN0 )  /\  ( I  <_  ( `  W )  /\  I  <_  ( `  S
) ) )  -> 
( ( W prefix  I
)  =  ( S prefix 
I )  <->  ( I  =  I  /\  A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i ) ) ) )
2513, 17, 20, 23, 24syl112anc 1275 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( ( W prefix  I
)  =  ( S prefix 
I )  <->  ( I  =  I  /\  A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i ) ) ) )
2611, 25mpbirand 441 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( ( W prefix  I
)  =  ( S prefix 
I )  <->  A. i  e.  ( 0..^ I ) ( W `  i
)  =  ( S `
 i ) ) )
27 lencl 11075 . . . . . . . . 9  |-  ( W  e. Word  V  ->  ( `  W )  e.  NN0 )
2827, 14anim12ci 339 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  ->  (
I  e.  NN0  /\  ( `  W )  e. 
NN0 ) )
29283adant2 1040 . . . . . . 7  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( I  e.  NN0  /\  ( `  W )  e.  NN0 ) )
3029adantr 276 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( I  e.  NN0  /\  ( `  W )  e.  NN0 ) )
3127nn0red 9423 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  ( `  W )  e.  RR )
3231leidd 8661 . . . . . . . . 9  |-  ( W  e. Word  V  ->  ( `  W )  <_  ( `  W ) )
3332adantr 276 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  ( `  W )  =  ( `  S )
)  ->  ( `  W
)  <_  ( `  W
) )
34 eqle 8238 . . . . . . . . 9  |-  ( ( ( `  W )  e.  RR  /\  ( `  W
)  =  ( `  S
) )  ->  ( `  W )  <_  ( `  S ) )
3531, 34sylan 283 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  ( `  W )  =  ( `  S )
)  ->  ( `  W
)  <_  ( `  S
) )
3633, 35jca 306 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( `  W )  =  ( `  S )
)  ->  ( ( `  W )  <_  ( `  W )  /\  ( `  W )  <_  ( `  S ) ) )
37363ad2antl1 1183 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( ( `  W
)  <_  ( `  W
)  /\  ( `  W
)  <_  ( `  S
) ) )
38 swrdspsleq 11199 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V )  /\  ( I  e. 
NN0  /\  ( `  W
)  e.  NN0 )  /\  ( ( `  W
)  <_  ( `  W
)  /\  ( `  W
)  <_  ( `  S
) ) )  -> 
( ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. )  <->  A. i  e.  ( I..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) )
3913, 30, 37, 38syl3anc 1271 . . . . 5  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. )  <->  A. i  e.  ( I..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) )
4026, 39anbi12d 473 . . . 4  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( ( ( W prefix 
I )  =  ( S prefix  I )  /\  ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. ) )  <->  ( A. i  e.  ( 0..^ I ) ( W `
 i )  =  ( S `  i
)  /\  A. i  e.  ( I..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) ) ) )
4110, 40bitr4d 191 . . 3  |-  ( ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W )
) )  /\  ( `  W )  =  ( `  S ) )  -> 
( A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
)  <->  ( ( W prefix 
I )  =  ( S prefix  I )  /\  ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. ) ) ) )
4241pm5.32da 452 . 2  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( ( ( `  W
)  =  ( `  S
)  /\  A. i  e.  ( 0..^ ( `  W
) ) ( W `
 i )  =  ( S `  i
) )  <->  ( ( `  W )  =  ( `  S )  /\  (
( W prefix  I )  =  ( S prefix  I
)  /\  ( W substr  <.
I ,  ( `  W
) >. )  =  ( S substr  <. I ,  ( `  W ) >. )
) ) ) )
432, 42bitrd 188 1  |-  ( ( W  e. Word  V  /\  S  e. Word  V  /\  I  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  S  <-> 
( ( `  W
)  =  ( `  S
)  /\  ( ( W prefix  I )  =  ( S prefix  I )  /\  ( W substr  <. I ,  ( `  W ) >. )  =  ( S substr  <. I ,  ( `  W
) >. ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    u. cun 3195   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999    <_ cle 8182   NN0cn0 9369   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Word cword 11071   substr csubstr 11177   prefix cpfx 11204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-substr 11178  df-pfx 11205
This theorem is referenced by:  pfxsuff1eqwrdeq  11231
  Copyright terms: Public domain W3C validator