| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dva | Unicode version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 |
|
| mpteq12dva.2 |
|
| Ref | Expression |
|---|---|
| mpteq12dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1920 |
. 2
|
| 3 | mpteq12dva.2 |
. . 3
| |
| 4 | 3 | ralrimiva 2603 |
. 2
|
| 5 | mpteq12f 4163 |
. 2
| |
| 6 | 2, 4, 5 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: mpteq12dv 4165 pfxmpt 11207 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |