ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dva Unicode version

Theorem mpteq12dva 4114
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
mpteq12dv.1  |-  ( ph  ->  A  =  C )
mpteq12dva.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
Assertion
Ref Expression
mpteq12dva  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem mpteq12dva
StepHypRef Expression
1 mpteq12dv.1 . . 3  |-  ( ph  ->  A  =  C )
21alrimiv 1888 . 2  |-  ( ph  ->  A. x  A  =  C )
3 mpteq12dva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
43ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  A  B  =  D )
5 mpteq12f 4113 . 2  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
62, 4, 5syl2anc 411 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475    |-> cmpt 4094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4095  df-mpt 4096
This theorem is referenced by:  mpteq12dv  4115
  Copyright terms: Public domain W3C validator