ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab Unicode version

Definition df-opab 4105
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
Distinct variable groups:    x, z    y,
z    ph, z
Allowed substitution hints:    ph( x, y)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
41, 2, 3copab 4103 . 2  class  { <. x ,  y >.  |  ph }
5 vz . . . . . . . 8  setvar  z
65cv 1371 . . . . . . 7  class  z
72cv 1371 . . . . . . . 8  class  x
83cv 1371 . . . . . . . 8  class  y
97, 8cop 3635 . . . . . . 7  class  <. x ,  y >.
106, 9wceq 1372 . . . . . 6  wff  z  = 
<. x ,  y >.
1110, 1wa 104 . . . . 5  wff  ( z  =  <. x ,  y
>.  /\  ph )
1211, 3wex 1514 . . . 4  wff  E. y
( z  =  <. x ,  y >.  /\  ph )
1312, 2wex 1514 . . 3  wff  E. x E. y ( z  = 
<. x ,  y >.  /\  ph )
1413, 5cab 2190 . 2  class  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }
154, 14wceq 1372 1  wff  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
Colors of variables: wff set class
This definition is referenced by:  opabss  4107  opabbid  4108  nfopab  4111  nfopab1  4112  nfopab2  4113  cbvopab  4114  cbvopab1  4116  cbvopab2  4117  cbvopab1s  4118  cbvopab2v  4120  unopab  4122  opabid  4301  elopab  4303  ssopab2  4321  iunopab  4327  elxpi  4690  rabxp  4711  csbxpg  4755  relopabi  4802  opabbrex  5988  dfoprab2  5991  dmoprab  6025  dfopab2  6274  cnvoprab  6319
  Copyright terms: Public domain W3C validator