ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12f Unicode version

Theorem mpteq12f 3893
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12f  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )

Proof of Theorem mpteq12f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1477 . . . 4  |-  F/ x A. x  A  =  C
2 nfra1 2405 . . . 4  |-  F/ x A. x  e.  A  B  =  D
31, 2nfan 1500 . . 3  |-  F/ x
( A. x  A  =  C  /\  A. x  e.  A  B  =  D )
4 nfv 1464 . . 3  |-  F/ y ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )
5 rsp 2419 . . . . . . 7  |-  ( A. x  e.  A  B  =  D  ->  ( x  e.  A  ->  B  =  D ) )
65imp 122 . . . . . 6  |-  ( ( A. x  e.  A  B  =  D  /\  x  e.  A )  ->  B  =  D )
76eqeq2d 2096 . . . . 5  |-  ( ( A. x  e.  A  B  =  D  /\  x  e.  A )  ->  ( y  =  B  <-> 
y  =  D ) )
87pm5.32da 440 . . . 4  |-  ( A. x  e.  A  B  =  D  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  A  /\  y  =  D )
) )
9 sp 1444 . . . . . 6  |-  ( A. x  A  =  C  ->  A  =  C )
109eleq2d 2154 . . . . 5  |-  ( A. x  A  =  C  ->  ( x  e.  A  <->  x  e.  C ) )
1110anbi1d 453 . . . 4  |-  ( A. x  A  =  C  ->  ( ( x  e.  A  /\  y  =  D )  <->  ( x  e.  C  /\  y  =  D ) ) )
128, 11sylan9bbr 451 . . 3  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
( x  e.  A  /\  y  =  B
)  <->  ( x  e.  C  /\  y  =  D ) ) )
133, 4, 12opabbid 3878 . 2  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  =  D ) } )
14 df-mpt 3876 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
15 df-mpt 3876 . 2  |-  ( x  e.  C  |->  D )  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  =  D ) }
1613, 14, 153eqtr4g 2142 1  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1285    = wceq 1287    e. wcel 1436   A.wral 2355   {copab 3873    |-> cmpt 3874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-11 1440  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-ral 2360  df-opab 3875  df-mpt 3876
This theorem is referenced by:  mpteq12dva  3894  mpteq12  3896  mpteq2ia  3899  mpteq2da  3902
  Copyright terms: Public domain W3C validator