ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dva GIF version

Theorem mpteq12dva 4045
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dva (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dva
StepHypRef Expression
1 mpteq12dv.1 . . 3 (𝜑𝐴 = 𝐶)
21alrimiv 1854 . 2 (𝜑 → ∀𝑥 𝐴 = 𝐶)
3 mpteq12dva.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
43ralrimiva 2530 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐷)
5 mpteq12f 4044 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
62, 4, 5syl2anc 409 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1333   = wceq 1335  wcel 2128  wral 2435  cmpt 4025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-ral 2440  df-opab 4026  df-mpt 4027
This theorem is referenced by:  mpteq12dv  4046
  Copyright terms: Public domain W3C validator